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Abstract Inspired by the Ax–Kochen isomorphism theorem, we develop a
notion of categorical ultraproducts to capture the generic behavior of an infinite
collection of mathematical objects. We employ this theory to give an asymp-
totic solution to the approximation problem in chromatic homotopy theory.
More precisely, we show that the ultraproduct of the E(n, p)-local categories
over any non-principal ultrafilter on the set of prime numbers is equivalent
to the ultraproduct of certain algebraic categories introduced by Franke. This
shows that chromatic homotopy theory at a fixed height is asymptotically
algebraic.
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1 Introduction

Motivation and background The guiding problem in stable homotopy theory
is the computation of the stable homotopy groups of spheres π∗S0. The first
attempts at this calculation, for example via a Postnikov filtration, are of lim-
ited use and only provide coarse information about the large scale structure of
π∗S0. Motivated by patterns seen in the Adams spectral sequence, chromatic
homotopy theory yields a more efficient filtration of π∗S0 through localiza-
tions Ln,p S0 of the sphere spectrum at the chromatic primes (n, p). These
localizations fit into the chromatic tower

· · · Ln,p S0 · · · L1,p S0 L0,p S0 � S0
Qp

and the chromatic convergence theorem of Hopkins and Ravenel implies that
the resulting filtration on π∗S0 is exhaustive. In fact, this tower arises from an
ascending filtration of the (p-local) stable homotopy category Sp,

SpQ � Sp0,p ⊂ Sp1,p ⊂ · · · ⊂ Spn,p = Ln,p Sp ⊂ · · · ⊂ Sp,

with filtration quotients equivalent to the category of K (n, p)-local spec-
tra, where K (n, p) is Morava K -theory. This filtration is exhaustive when
restricted to finite spectra, but not in general. The chromatic approach thus
divides the computation of π∗S0 into two main problems:

(1) The study of the categories Spn,p and the calculation of the local homotopy
groups π∗Ln,p S0 for each n ≥ 0 and every prime p.

(2) The question of how to assemble these local pieces to reconstruct π∗S0.

The goal of this paper and its sequel is to show that, asymptotically in the
prime p, both problems are controlled entirely by algebraic geometry. More
generally, our main result provides a solution to the longstanding open ques-
tion of finding a good algebraic approximation to Spn,p for n < ∞. Serre’s
work addresses this problem when n = 0 and shows that this case is governed
entirely by the theory of rational vector spaces. However, for every n > 0 and
any prime p, these categories do not admit an algebraic model.
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Chromatic homotopy is asymptotically algebraic 739

It is nevertheless possible to algebraically model partial information about
Spn,p. For instance, Bousfield gave a purely algebraic classification of all
homotopy types in this categorywhenn = 1.Asn goes to infinity, the complex-
ity of Spn,p increases rapidly and all known algebraic approximations grow
coarser. In the extremal case n = ∞, the “Mahowald uncertainty principle”
states that even the homotopy types of objects cannot bemodeled algebraically.

To describe the algebraic approximations we will use, recall that Quillen’s
work on complex cobordism reveals a close connection between stable homo-
topy theory and the moduli stack of formal groups Mfg: the cohomology of
the tensor powers of the canonical line bundle on the moduli stack forms the
E2-page of the Adams–Novikov spectral sequence converging to π∗S0. The
p-local moduli stack (Mfg)p admits an increasing filtration by the open sub-
stacks (Mfg)n,p consisting of formal groups of height≤ n at the prime p that
mirrors the chromatic filtration as observed by Morava. Our approximation to
Spn,p will be a category Frn,p of twisted complexes of quasi-coherent sheaves
on (Mfg)n,p introduced and first studied systematically by Franke.

We can now state a first version of our main result.

Theorem For any n ≥ 0, there is a symmetric monoidal equivalence

lim
p→∞ Spn,p � lim

p→∞ Frn,p .

The limit notation is justified as we are capturing the asymptotic behavior
of these categories, however it does not stand for the categorical limit (or the
topological limit). Indeed, there are no natural functors between the categories
as p varies. Instead, to produce a limiting object out of the collections of cate-
gories Spn,p and Frn,p as p →∞, we construct a categorical analogue of the
model-theoretic notion of ultraproducts. A key feature of the ultraproduct con-
struction is that it captures the generic behavior of a collection of objects. Thus
the theorem above allows one to study questions about the generic behavior
of chromatic homotopy theory by purely algebraic means.

In more detail. It has long been understood that chromatic homotopy theory
at a fixed height n simplifies as the prime tends towards infinity. This sim-
plification manifests itself as sparseness in various spectral sequences leading
to certain topological constructions (the existence of Smith–Toda complexes,
Picard groups, homotopy groups of finite complexes) being completely con-
trolled by algebra.However the size of the prime needed for these constructions
to be purely algebraic depends on the construction.

In the early 1990s, Franke [18] introduced categories Frn,p of quasi-periodic
chain complexes of comodules whose homotopy theory was intended to con-
verge to Spn,p in the limit p →∞. However, as observed by Patchkoria [47],
his work remains incomplete due to the difficulty of directly comparing the
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740 T. Barthel et al.

algebraic categories to the topological categories. In contrast, our approach to
circumvent this problem is based on and inspired by concepts frommathemat-
ical logic.

Our use of ultraproducts resembles the use in the celebrated Ax–Kochen
isomorphism theorem ( [2–4]). Their theorem produces an astounding bridge
between local fields of characteristic 0 and local fields of characteristic p,
which is a non-canonical isomorphism between ultraproducts

∏
FQp

∼=
∏

FFp((x)),

for every non-principal ultrafilterF on the primenumbers. Thus,Łos’s theorem
implies that a first order statement in the theory of fields holds for Fp((x)) for
almost all p if and only if it holds for Qp for almost all p. For example,
Lang proved the existence of non-trivial zeros for all degree d homogeneous
polynomials in at least d2 + 1 variables over Fp((x)). Since the existence of
such a zero is a first order statement, for any prime p different from a finite
number of exceptional primes, any degree d homogeneous polynomial in at
least d2 + 1 variables with coefficients in Qp has a non-trivial zero.

More generally, let
∏

F Mi be the ultraproduct of a collection of models
(Mi )i∈I for some first order theory with respect to an ultrafilter F on I . Łos’s
theorem states that a first order statement is true for Mi for almost all i ∈ I if
and only if it is true for

∏
F Mi for all non-principal F . Thus Łos’s theorem

demonstrates that ultraproducts at non-principal ultrafilters can be used to
capture the asymptotic behavior of a collection of models. At the same time,
the ultraproducts

∏
F Mi for non-principal F often exhibit interesting new

features. For instance, in the case of the isomorphism above, the ultraproduct
of characteristic p fields

∏
FFp((x)) is a characteristic 0 field.

We modify the definition of the ultraproduct to function in the homotopical
world. Given a collection of objects (cp)p∈P in an∞-category C indexed by
a set P and an ultrafilter F on P , we define the ultraproduct to be

∏
Fcp = colim

U∈F
∏

i∈U
cp,

where the colimit is along reverse inclusions. Let Spn,p be the E(n, p)-local
category, let Frn,p be Franke’s algebraic category, and letF be a non-principal
ultrafilter on P . The main result is a symmmetric monoidal equivalence of
∞-categories

∏
F Spn,p �

∏
F Frn,p,

where the ultraproduct is taken in a suitable subcategory of the∞-category of
symmetric monoidal∞-categories.
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Chromatic homotopy is asymptotically algebraic 741

The following consequence of Łos’s theorem (see [16, Theorem 4.1.9], for
instance) is known as the transfer principle: given two collections of objects
(ap)p∈P and (bp)p∈P indexed by a set P such that the ultraproducts

∏
Fap

and
∏

Fbp are isomorphic for every non-principal ultrafilter on P , then a first
order statement is true for all but finitely many elements in (ap) if and only
if it is true for all but finitely many objects in (bp). To extract results from
our equivalences, one would like an analogous transfer principle in the ∞-
categorical setting. In lieu of such an ∞-categorical transfer principle, we
provide arguments that establish the transfer principle for specific problems
that we are interested in.
Applications Our main theorem has a variety of applications. In order to
display the utility of the result, we establish the first of these applications in
this paper. We indicate further applications below, but leave the details to the
sequels.

Recall that a p-local Smith–Toda complex of type k+1 is a spectrum Vp(k)

such that B P∗(Vp(k)) ∼= B P∗/(p, . . . , vk); their existence and non-existence
is a major open problem in stable homotopy theory [46]. Further, the existence
of multiplicative structure on these Smith–Toda complexes is subtle: The mod
p Moore spectrum Vp(0) = S0/p admits the structure of an An-algebra if and
only if n < p, which is intimately related to Schwede’s proof of the rigidity of
the stable homotopy category [51]. More generally, Nave also showed that, for
p ≥ 7, if Vp(

p−3
2 ) exists, then it does not admit the structure of anA2-algebra,

where A2 is the 2nd operad in Stasheff’s hierarchy of associative operads.
A consequence of our equivalence is that locally any given obstruction

to the existence of Smith–Toda complexes or multiplicative structure on them
vanishes for almost all primes.More precisely, let En,p be a heightn Morava E-
theory. For any 0 ≤ k < n and p large enough (depending on n and k), we show
that there exists an En,p-local spectrum Vn,p(k) such that (En,p)∗(Vn,p(k)) ∼=
(En,p)∗/(p, . . . , vk). Further, since the algebraic analogues of the local Smith–
Toda complexes in Frn,p are E∞-algebras, part of this multiplicative structure
can be transferred through our equivalence. Let Am be the mth associative
operad.

Corollary For any m > 0 and n > k ≥ 0, there exists a prime p0 such
that, for all primes p > p0, there exists an En,p-local Am-algebra spectrum
Vn,p(k) such that (En,p)∗(Vn,p(k)) ∼= (En,p)∗/(p, . . . , vk).

The existence of local analogues of the Smith–Toda complexes is a problem
that is amenable to classical methods, but the multiplicative structure guaran-
teed in the corollary above appears to be more difficult to obtain. Besides
the equivalence of the main theorem, the key ingredient in the proof of the
corollary is the fact that Am is compact as an∞-operad. In fact, the corollary
applies to local generalized Moore spectra and any compact∞-operad.
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742 T. Barthel et al.

Information also flows through our equivalence from stable homotopy the-
ory to algebraic geometry.Hovey and Sadofsky [33] have shown that the Picard
group of Spn,p is isomorphic toZ for 2p−2 > n2+n. Since the equivalence is
symmetric monoidal, this implies that the Picard group of Frn,p is isomorphic
to Z for large enough primes generalizing a result of Barnes and Roitzheim
[14] for n = 1.

Hopkins’ chromatic splitting conjecture [29] describes how the sphere spec-
trum S0 can be assembled from its local pieces Ln,p S0. More precisely, the
conjecture stipulates that the bottom map in the chromatic pullback square

Ln,p S0 L K (n,p)S0

Ln−1,p S0 Ln−1,p L K (n,p)S0

is split and proposes a precise decomposition of the cofiber. The known cases of
this conjecture give another example of the asymptotic behavior of chromatic
homotopy theory. The chromatic splitting conjecture is known for n = 1 and
all p and also n = 2 and p ≥ 3 [21,22]. At n = 2 and p = 2 the conjecture is
false [7,8], which suggests that, at each height, the conjecture may only hold
for all but a finite set of primes. However, the current approaches appear to be
infeasible at higher heights. Using a K (n)-local refinement of the equivalence
of the main theorem, we reduce the chromatic splitting conjecture for large
enough primes to a purely algebro-geometric question, thereby offering a novel
attack on the problem.

Outline of the results and proof Let I be a set, let (Ci )i∈I be a collection
of compactly generated∞-categories, and consider an ultrafilter F on I . We
define the ultraproduct to be

∏ω

FCi = colim
U∈F

∏
i∈U

Ci ,

where the colimit is along reverse inclusions and taken in the∞-category of
compactly generated∞-categories. Note that there is a canonical functor∏

I
Ci →

∏ω

FCi

which is surjective on compact objects.
The ultraproduct shares many properties with and can be understood in

terms of the input compactly generated∞-categories. For instance, if c and d
are compact objects in the ultraproduct and (ci )i∈I and (di )i∈I are preimages
of c and d in

∏
ICi , then

Map∏ω
FCi

(c, d) �
∏

F MapCi
(ci , di ),
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where the ultraproduct on the right is taken in the∞-category of spaces.Also, if
the categories Ci are stable and equipped with a symmetric monoidal structure,
then so is the ultraproduct.

For any compactly generated symmetric monoidal∞-category C, we may
implement a familiar version of Whitehead’s theorem by localizing with

respect to maps f : c → c′ such that [u, f ] : [u, c] ∼=−→ [u, c′] is an isomor-
phism for all invertible objects u in C. If the compactly generated∞-categories
Ci are symmetric monoidal, we obtain the “Pic-generated protoproduct”

∏Pic

F Ci

by localizing the ultraproduct
∏ω

FCi with respect to these equivalences. Infor-
mally speaking, this process enforces a suitable finiteness condition on the
ultraproduct.

To state the main theorem, we must describe the algebraic approximation
to Spn,p that we are going to use. In [18], Franke introduces a category of
twisted complexes of (En,p)0En,p-comodules. Consider the category with
objects chain complexes of (En,p)0En,p-comodules equipped with a chosen
isomorphism

X
∼=−→ (X ⊗π0En,p (π2En,p))[2]

between the complex and the double suspension of the complex tensored with
the invertible comodule π2En,p and morphisms maps of complexes compati-
ble with the chosen isomorphism. We establish several key features (at large
enough primes) of a symmetric monoidal model structure on this category
defined by Hovey [30] and Barnes–Roitzheim [14] in which weak equiva-
lences are quasi-isomorphisms of the underlying complexes of comodules.
Let Frn,p be the compactly generated symmetric monoidal∞-category asso-
ciated to this symmetric monoidal model category.

Let I = P , the set of prime numbers, and letF be a non-principal ultrafilter
on P . The main theorem can be stated as follows:

Theorem For any n ≥ 0, there is a symmetric monoidal equivalence of Q-
linear stable∞-categories

∏Pic

F Spn,p �
∏Pic

F Frn,p .

The proof of this theorem passes through a descent result on each side.
Mathew [41], building on Lurie’s homotopical descent theory and classical
work of Hopkins and Ravenel [49], produces an equivalence

123



744 T. Barthel et al.

Spn,p � limModE⊗•+1n,p
,

where the limit is taken over the cosimplicial diagram of∞-categories induced
by the Amitsur complex E⊗•+1n,p of S0 → En,p.

We prove a similar result on the algebraic side. Let GrAb be the category
of graded abelian groups and let H : GrAb→ Sp be the Eilenberg–MacLane
functor. For a spectrum X , we write X� for Hπ∗X . Since H is lax symmet-
ric monoidal, applying (−)� to a cosimplicial E∞-ring spectrum produces a
cosimplicial E∞-ring spectrum. We produce an equivalence

Frn,p � limMod
(E⊗•+1n,p )�

.

Using these equivalences as well as the generic uniform bound on the coho-
mological dimension of the Morava stabilizer group, we study the analogous
descent questions at a non-principal ultrafilter F . We produce equivalences

∏Pic

F Spn,p � Loc Pic lim
∏Pic

F ModE⊗•+1n,p

and

∏Pic

F Frn,p � Loc Pic lim
∏Pic

F Mod
(E⊗•+1n,p )�

,

where the right hand side is the localizing subcategory (closure under all col-
imits) on the invertible objects in the limit.

Thus it is crucial to understand the cosimplicial compactly generated ∞-
categories

∏Pic

F ModE⊗•+1n,p
and

∏Pic

F Mod
(E⊗•+1n,p )�

.

Using Morita theory, we show that

lim
∏Pic

F ModE⊗•+1n,p
� limMod∏

F E⊗•+1n,p

and

lim
∏Pic

F Mod
(E⊗•+1n,p )�

� limMod∏
F (E⊗•+1n,p )�

,

where
∏

F E⊗k
n,p and

∏
F (E⊗•+1n,p )� are the ultraproducts in the∞-category of

E∞-ring spectra. It suffices to gain a good understanding of the cosimplicial
E∞-ring spectra
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Chromatic homotopy is asymptotically algebraic 745

∏
F E⊗•+1n,p and

∏
F (E⊗•+1n,p )�.

This is the purpose of the following theorem:

Theorem There is an equivalence of cosimplicial E∞-ring spectra

∏
F E⊗•+1n,p �

∏
F (E⊗•+1n,p )�.

In other words, the cosimplicial E∞-ring spectrum
∏

F E⊗•+1n,p is formal.
Several ingredients go into the proof of this theorem. The arithmetic fracture
square is used to reduce the result to the rational case and the case where
the tensor product is relative to the p-complete sphere spectrum Ŝ. The proof
in the rational case is an application of obstruction theory. The proof in the
case relative to Ŝ is more difficult. We develop a functorial theory of weights
for spectra equipped with a naive C p−1-action and apply it to the cosimplicial

E∞-ring spectrum E
⊗Ŝ•+1
n,p . This gives a weight decomposition of cosimplicial

spectra of the form

E
⊗Ŝ•+1
n,p �

⊕

χ∈hom(C p−1,Z×p )

(
E
⊗Ŝ•+1
n,p

)
χ
,

indexed by characters of C p−1. This decomposition reflects the fact that the
non-trivial k-invariants of En,p grow sparser as p increases.Applying the ultra-
product over a non-principal ultrafilter, we find that the cosimplicial spectrum
is formal.

Conventions Throughout this paper we will employ the following conven-
tions:

• We write Map for mapping spaces in∞-categories and Hom for mapping
spectra in stable∞-categories.

• The ∞-category of commutative monoids in a symmetric monoidal ∞-
category C will be denoted by CAlg(C) and we refer to its objects as
commutative algebras in C. For C = Sp equipped with its natural sym-
metric monoidal structure, we usually say E∞-ring spectrum or E∞-ring
instead of commutative algebra.

• A symmetric monoidal presentable ∞-category C = (C,⊗) is called
presentably symmetric monoidal if the monoidal structure ⊗ preserves
colimits separately in each variable.

• By symmetricmonoidal compactly generated∞-categorywe alwaysmean
a compactly generated∞-category equipped with a symmetric monoidal
structure⊗ such that⊗ commutes with all colimits and restricts to a sym-
metric monoidal structure on the full subcategory Cω of compact objects
in C. In particular, the unit object is assumed to compact.
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746 T. Barthel et al.

• If C is a presentably symmetric monoidal stable ∞-category and A is a
commutative algebra in C, then ModA(C) denotes the stable∞-category
of modules over A in C. In the case C = Sp, we will write ModA instead of
ModA(C) for simplicity. Similarly, we write CAlgA(C) for the∞-category
of commutative A-algebras in C and omit the∞-category C when it is clear
from context and in particular whenever C = Sp.

• If C is a presentable stable∞-category and S is a collection of objects in C,
then we will write LocC(S) for the smallest localizing (stable) subcategory
of C containing S.

• The totalization of a cosimplicial diagram of compactly generated ∞-
categories E•, denoted Tot(E•), will always refer to the limit taken in the
∞-category of compactly generated∞-categories.

• Let G be a finite group. The category of naive G-spectra is by definition
the functor category Fun(BG,Sp), where the classifying space BG of G
is considered as an∞-groupoid.

2 Recollections

2.1 Ultrafilters

In this subsection we explain the basics of ultrafilters and ultraproducts. Our
goal is to give the background necessary for the paper and a brief introduc-
tion for the working homotopy theorist. More details may be found in many
textbooks, e.g., [15] or [16]; we will primarily follow [52].

The basic definition is the following:

Definition 2.1 An ultrafilter F on a set I is a nonempty collection of subsets
of I satisfying:

(1) The empty set is not an element of F .
(2) If A ⊆ B ⊆ I and A ∈ F , then B ∈ F .
(3) If A, B ∈ F , then A ∩ B ∈ F .
(4) If A ⊆ I , then either A ∈ F or I \ A ∈ F .

A filter is a subset of the power set of I satisfying all but the last axiom. A
filter may be completed to an ultrafilter in many ways, assuming the axiom of
choice.

Lemma 2.2 If F is a filter on I , then there exists an ultrafilter F on I con-
taining F .

Proof This is an application of Zorn’s lemma. The union of a chain of filters
is a filter and a maximal filter is an ultrafilter.

The following lemma is useful:
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Chromatic homotopy is asymptotically algebraic 747

Lemma 2.3 Suppose I is a set andF is an ultrafilter on I . If I1� I2�· · ·� In =
I is a finite partition of I , then there exists exactly one 1 ≤ i ≤ n such that
Ii ∈ F .

Proof If Ii /∈ F for all i , then ∅ =⋂n
i=1(I \ Ii ) ∈ F , a contradiction. If there

exist i �= j such that Ii , I j ∈ F , then ∅ = Ii ∩ I j ∈ F . The claim follows.

Example 2.4 Given an element x ∈ I , the set of subsets of I containing x
is an ultrafilter denoted Fx . The ultrafilters of this form are called principal
ultrafilters. Because of this, the ultrafilters on a set may be considered as
generalized elements of the set.

Lemma 2.5 An ultrafilter F that contains a finite set is principal.

Proof Wemay partition I into the points of the finite set and the complement of
the finite set. SinceF contains a finite set, it does not contain the complement,
so one of those points must be in F by the previous lemma.

It is reasonably easy to construct non-principal filters. For instance, the
collection of cofinite subsets of an infinite set I is a filter, known as the Frechet
filter F∞, but it is not an ultrafilter. By [10], the existence of a non-principal
ultrafilter is independent of ZF so it is impossible to explicitly describe non-
principal ultrafilters.

Lemma 2.6 An ultrafilter F is non-principal if and only if it contains F∞.

Proof This follows immediately from Lemma 2.5.

Lemma 2.7 If A ⊆ I is infinite, then there exists a non-principal ultrafilter
F on I such that A ∈ F .

Proof Consider the collection of subsets of I that contain all but a finite number
of elements in A. This is a filter that contains F∞ and by Lemma 2.2 it can be
completed to an ultrafilter.

2.2 Set-theoretic ultraproducts

For the rest of this section, I will denote some indexing set, for example the
set of prime numbers P = {2, 3, 5, 7, . . .}.
Definition 2.8 Let (Ai )i∈I be a collection of nonempty sets and let F be an
ultrafilter on I . The ultraproduct of the sets (Ai )i∈I over the ultrafilterF is the
quotient of the product

∏
i∈I Ai defined by the relation

(ai )i∈I ∼ (bi )i∈I if and only if {i ∈ I |ai = bi } ∈ F .

We will denote the quotient (
∏

i∈I Ai )/∼ by
∏

F Ai .
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748 T. Barthel et al.

By definition, there is a quotient map from the product to the ultraproduct

∏
i∈I

Ai →
∏

F Ai .

We will denote the image of (ai ) ∈ ∏
i∈I Ai in the ultraproduct by [ai ]. If the

Ai ’s are all the same set A, then we will refer to an element [ai ] ∈ ∏
F A as

constant if it is the image of (a)i∈I for some a ∈ A.
The ultraproduct of a collection of sets of bounded finite cardinality is

particularly simple.

Example 2.9 Let X be a finite set and let F be an ultrafilter on I . There is an
isomorphism

∏
F X ∼= X,

where the ultraproduct is taken over the constant collection Ai = X : Let
(xi )i∈I ∈ ∏

i∈I X . We may may produce a finite partition of I indexed by the
elements of X by setting

Ix = {i ∈ I : xi = x}.
By Lemma 2.3, only one of these sets can be in F , thus [xi ] is constant in∏

F X .

Ultraproducts preserve many algebraic structures, for instance the structure
of being an abelian group, commutative ring, field, and so on. These are all
special cases of a result due toŁoś,which is often referred to as the fundamental
theorem of ultraproducts.

Theorem 2.10 (Łoś) ( [16, Theorem 4.1.9]) Let L be a language and let F be
an ultrafilter on a set I . Suppose (Xi )i∈I is a collection of L-structures with
ultraproduct X =∏

F Xi . Let

(xi,1)i∈I , . . . , (xi,n)i∈I ∈
∏

i∈I
Xi

be n elements in the product. Then for any formula φ in n unbounded variables,
φ([xi,1], . . . , [xi,n]) holds in X if and only if

{i ∈ I : φ(xi,1, . . . , xi,n) holds in Xi )} ∈ F .

Informally speaking, the content of this theorem can be summarized by
saying that a first order statement holds for the ultraproduct if and only if it
holds on a set in the ultrafilter.
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Chromatic homotopy is asymptotically algebraic 749

Example 2.11 Let Ap = Fp be the finite field of order p. Given an ultrafilter
F on the set of primes P , we may form the ultraproduct

FF =
∏

FFp.

By Łoś’s theorem, FF is a field which behaves much like finite fields. For
instance, the absolute Galois groups of FF is Ẑ. The fields obtained in this
way are known as pseudo-finite fields [6].

If F = Fp is principal then the ultraproduct is just Fp. Otherwise the ultra-
product is a characteristic 0 field. The reason for this is because multiplication
by n on Fp is an isomorphism for all but finitely many p. Since F is non-
principal this means that it is an isomorphism on a set in the ultrafilter. This
implies that multiplication by n induces an automorphism of the ultraproduct.

The properties of these fields depend on the ultrafilter chosen. For example,
by Łoś’s theorem −1 is a square in FF if and only if F contains the set of
primes that are congruent to 1 mod 4.

Example 2.12 Consider the ultraproduct ZF = ∏
FZp of the p-adic integers

with respect to a non-principal ultrafilter F on P . By an argument similar to
the one used in Example 2.11, ZF is a commutative algebra over Q.

Example 2.13 We may let Ai = N and take the ultraproduct

NF =
∏

FN.

For F non-principal this is a semiring of cardinality 2ℵ0 . If the sequence
(ni ) ∈∏

i∈I N is bounded on a set in the ultrafilter then [ni ] is constant.
Example 2.14 We will let ZF be the ultraproduct

∏
FZ. The canonical maps

Z → Z/n, induce a surjection

ZF � Ẑ.

The kernel of this map is an uncountable rational vector space.

As we will show in the next example, the ultraproduct does not necessarily
send polynomial rings to polynomial rings.

Example 2.15 Let Ap = Fp[x] and let F be an ultrafilter on P . Consider the
ultraproduct

∏
F (Fp[x]).
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If F is principal, then this is the polynomial ring in one variable over Fp. It
is generated as a module over Fp by the monomials xn where n ∈ N = NF .
For F a non-principal ultrafilter, the resulting ring is very large and more
difficult to describe (with generators and relations). For instance, it contains
the equivalence class of

( p∑

i=0
xi

)

p∈P

in which the degree and number of monomials involved in each term both
grow to infinity.

This example represents a weakness of ultraproducts. They do not preserve
gradings and send unbounded phenomena (such as sequence of polynomials
with unbounded degree) to rather exotic objects. There is a solution to this
problem, known as the protoproduct [52, Chapter 9], whose categorical ana-
logue plays an important role throughout this paper. The protoproduct takes in
a collection of filtered objects and produces a subset of the ultraproduct. The
next examples display the behavior of the protoproduct for two filtrations on
polynomial rings.

Example 2.16 We will use the notation of the previous example. Consider the
collection (Fp[x], Fp[x]≤k)p∈P of polynomial rings equipped with the degree
filtration, so Fp[x]≤k is the subset of Fp[x] of polynomials of degree≤ k. The
protoproduct is defined as a quotient of the “bounded product”

∏�

P(Fp[x], Fp[x]≤k) = colim
k

∏
PFp[x]≤k

by the same equivalence relation as the ultraproduct. Since colimits and quo-
tients commute, this quotient is the same as the colimit

∏�

F (Fp[x], Fp[x]≤k) = colim
k

∏
FFp[x]≤k ∼= (colim

k

∏
PFp[x]≤k)/∼.

The protoproduct along the degree filtration sends polynomial rings to poly-
nomial rings:

∏�

F (Fp[x], Fp[x]≤k) ∼= FF [x].

Example 2.17 There is another natural filtration that we may put on Fp[x].
Let Fp[x]≤k-mon be the subset of polynomials built out of less than or equal to
k monomials. For F a non-principal ultrafilter, the protoproduct
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∏�

F (Fp[x], Fp[x]≤k-mon)

is the monoid-algebra over FF on NF . It has an FF -basis given by x [n p] where
[n p] ∈ NF . Thus this is an “ultra” polynomial ring. It is not graded by the
natural numbers but by NF .

Remark 2.18 Let I be a set viewed as a discrete space, and denote by β I the
set of ultrafilters on I , with a natural map I → β I given by sending an element
x ∈ I to the principal ultrafilter Fx on I . For A ⊆ I , write Â for the family of
ultrafilters on I containing A. The sets Â for all A ⊆ I form a basis of open
subsets for the topology on β I , the Stone topology. This construction makes
β I into a compact Hausdorff space, and I → β I can be identified with the
Stone–C̆ech compactification of I .

In these terms, the ultraproduct admits a geometric interpretation in the
following sense [52]: Consider a category C closed under products and filtered
colimits and let (ci )i∈I ∈ C I be a collection of objects in C indexed by the set
I . A sheaf on the discrete space I with values in a category C is given by a
functor

∏
−ci : (A ⊆ I ) �→

∏
i∈A

ci .

For a given ultrafilter F on I , the two inclusions ι : I → β I and {F} → β I
induce geometric morphisms (ι∗, ι∗) and (F∗,F∗) between the corresponding
categories of sheaves. The composite

Sh(I )
ι∗ Sh(β I ) F∗ C

can then be identified with the ultraproduct functor
∏

F . In other words, the
ultraproduct

∏
Fci is equivalent to the stalk at F of the sheaf ι∗E , where

E ∈ Sh(I ) corresponds to the collection (ci )i∈I .

3 Ultraproducts

3.1 Ultraproducts in ∞-categories

In this section, we define the ultraproduct of a collection of objects in an∞-
category that admits filtered colimits and products. In particular, we study the
special case of the∞-category Cat∞ of∞-categories, which gives rise to the
ultraproduct of∞-categories. An independent account of some of the results
in this section can be found in [37, E.3.3.4].

Given a collection of nonempty sets Xi and an ultrafilter F on I , there is a
canonical isomorphism
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∏
F Xi =

(∏
I
Xi

)
/ ∼ ∼=−→ colim

U∈F
∏

i∈U
Xi

induced by the projections, where the colimit is taken along reverse inclusions.
This motivates the following definition:

Definition 3.1 Let C be an∞-category that admits products and filtered col-
imits and let (ci )i∈I be a collection of objects in C. For an ultrafilter F on I
we define the ultraproduct of (ci )i∈I to be the object

∏
Fci = colim

U∈F
∏

i∈U
ci ,

where the colimit is taken along reverse inclusions.

Remark 3.2 Let U ∈ F . Then we obtain an ultrafilter on the set U , FU , by
intersecting the elements of F with U . Let C be an∞-category with products
and filtered colimits and let (ci )i∈I be a collection of objects in C. There is a
canonical equivalence

∏
Fci �

∏
FU

ci .

Thus for any set U /∈ F , we may “throw out” the objects supported on U .
WhenF is non-principal, Lemma 2.5 implies that we may throw out any finite
number of objects in the ultraproduct.

Example 3.3 If F = F j is a principal ultrafilter for some j ∈ I , then

∏
F j

ci � c j .

Remark 3.4 If C is compactly generated then filtered colimits in C are left
exact. This follows from the fact that C = Ind(Cω) and the Ind-category
consists of finite limit preserving presheaves on Cω [38, 5.3.5.4]. Thus the
statement reduces to the corresponding fact for the ∞-category of spaces,
which follows from [38, 5.3.3.3]. Therefore, when C is compactly generated,
ultraproducts in C commute with finite limits.

By the definition of ultraproduct, there is a canonical map

[−]F :
∏

I
ci −→

∏
Fci .

When F is clear from context, we will abbreviate this to [−].
We now consider the case that C is Cat∞, which is bicomplete [38, Sections

3.3.3, 3.3.4] and compactly generated [38, Section 5.5]. Given a collection
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of ∞-categories (Ci )i∈I and objects ci ∈ Ci , we will write (ci )i∈I for the
corresponding object in the product

∏
ICi and [ci ]F for the object [(ci )i∈I ]F

in the ultraproduct
∏

FCi . When the indexing set I is clear we will denote
these objects by (ci ) and [ci ]. If c ∈ ∏

FCi , we will say that c is represented
by (ci ) ∈∏

ICi if [ci ] � c.
Let Top be the∞-category of∞-groupoids. We will refer to the objects of

Top as spaces. The inclusion functor from spaces to∞-categories

Top→ Cat∞

has both a right adjoint, which is the core functor C �→ C�, and a left adjoint,
which is the groupoidification functor C �→ C[C−1]. The notation C[C−1] is
justified by considering the groupoidification as “inverting all morphisms in
C”. One can also invert only some of the morphisms: Given a subcategory
W ⊂ C, we can define C[W−1] to be the pushout of the diagram

W C

W [W−1].

It is easy to see that for every∞-category D we get that Fun(C[W−1],D) =
DC[W−1] is the full subcategory of Fun(C,D) consisting of functors that send
a morphism in W to an equivalence in D.

Lemma 3.5 Let C and D be∞-categories and let W ⊂ C. There is an equiv-
alence of∞-categories

(C ×D)[(W ×D�)−1] �−→ C[W−1] ×D.

Proof We shall first prove this for W = C. In this case we are required to prove
the following diagram is a pushout diagram

W ×D� W ×D

W [W−1] ×D� W [W−1] ×D.

It is enough to show that for every∞-category T the following diagram is a
pullback diagram:
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Fun(D, T W [W−1]) Fun(D, T W )

Fun(D�, T W [W−1]) Fun(D�, T W ).

This follows from the fact that T W [W−1] → T W is a fully faithful functor.
Now for a general W ⊂ C consider the diagram

W ×D� W ×D C ×D

W [W−1] ×D� W [W−1] ×D C[W−1] ×D.

The right square is a pushout square since − × D preserves colimits and,
since the left square is a pushout square, the outer square is also a pushout
square.

Corollary 3.6 Let C and D be ∞-categories and let W ⊂ C and Z ⊂ D be
subcategories that contain the core. There is an equivalence of∞-categories

(C ×D)[(W × Z)−1] �−→ C[W−1] ×D[Z−1].
Proof This follows from the universal property and applyingLemma3.5 twice.

We will say that an∞-category is contractible if its underlying simplicial
set (or the∞-groupoid C[C−1]) is contractible. For instance, if C has an initial
or terminal object, then it is contractible.

Proposition 3.7 Let (Ci )i∈I be a collection of ∞-categories such that
∏

ICi
is contractible. There is an equivalence

∏
FCi � (

∏
I
Ci )[W−1

F ],

where WF is the subcategory supported on the morphisms that are an equiv-
alence on a set in the ultrafilter.

Proof. Let

WU =
∏

i∈U
C�i ×

∏
i /∈U

Ci .

Note that

WF = colim
U∈F WU .
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For every U ∈ F , there is a pushout diagram

WU
∏

ICi

WU [W−1
U ] (

∏
ICi )[W−1

U ].

Since W �→ W [W−1] is a left adjoint, taking the colimit over U ∈ F gives an
equivalence

(
∏

I
Ci )[W−1

F ] � colim
U∈F

(∏
I
Ci

[
W−1

U ]]).

By Lemma 3.5 we get

(
∏

I
Ci )[W−1

F ] � colim
U∈F

(∏
i∈U

Ci ×
∏

i /∈U
Ci [(

∏
i /∈U

Ci )
−1]).

Now since
∏

ICi is contractible none of the Ci are empty sowe get that
∏

i /∈UCi
is a retract of

∏
ICi and thus

∏
i /∈UCi is contractible. We get that

(
∏

I
Ci )[W−1

F ] � colim
U∈F

(∏
i∈U

Ci × ∗
)

�
∏

FCi .

Remark 3.8 Note that the∞-category
∏

ICi is contractible if it has a terminal
(respectively initial) object. This happens if each Ci has a terminal (respectively
initial) object.

Given a model category in which filtered colimits of weak equivalences
are weak equivalences, homotopy filtered colimits can be computed 1-
categorically. Since products of weak equivalences between fibrant objects are
alwaysweak equivalences, this implies that ultraproducts of fibrant objects can
be computed 1-categorically. Model categories with the property that filtered
colimits of weak equivalences are weak equivalences include the category of
simplicial sets with the Quillen or Joyal model structure and the category of
chain complexes of modules over a ring with the standard model structure.

Lemma 3.9 Given quasicategories (Si,•)i∈I , let
∏

F Si,• be the ultraproduct
taken in the 1-category of simplicial sets. This simplicial set is a quasicategory
modeling the ultraproduct of the∞-categories corresponding to the collection
(Si,•)i∈I . Note that we have an isomorphism of sets

(
∏

F Si,•)n
∼=

∏
F Si,n.
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Lemma 3.10 Filtered colimits distribute over infinite products in the ∞-
category Top. That is, let I be a set and for each i ∈ I , let Ji be a filtered
category and

Fi : Ji −→ Top

be a functor. Let

F :
∏

I
Ji

∏
I Fi−→ TopI

∏
−→ Top

be the composite. Then there is a canonical equivalence

colim∏
I Ji

F �
∏

I
colim

Ji
Fi .

Proof This is true in Set by [5]. Therefore, 1-categorically, it is true in sSet and
since the Quillen model structure on sSet satisfies the conditions of the para-
graph above, it is true homotopically since we may apply fibrant replacement.

Lemma 3.11 Let (Ci )i∈I be a collection of ∞-categories and let F be an
ultrafilter on I . There is an equivalence of∞-categories

(
∏

FCi )
op �

∏
F (Copi ).

3.2 Ultraproducts of ∞-categories

We study categorical properties of ultraproducts of ∞-categories. We begin
with a key proposition computing Hom-spaces in ultraproducts of ∞-
categories. The proof of this proposition depends on a technical lemma due to
Rozenblyum.

Proposition 3.12 Let (Ci )i∈I be a collection of∞-categories. For two objects
c, d ∈∏

FCi represented by (ci ) and (di ), there is a natural equivalence

Map∏
FCi

(c, d) �
∏

F Map(ci , di ).

Proof For this proof wewill work with quasicategories. Given a quasicategory
C, we will write TwArr(C) for the twisted arrow category of [36, 5.2.1.1]. By
[36, 5.2.1.3], there is a right fibration

TwArr(C)→ C × Cop,
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where the fiber over (c, d) is the mapping space Map(c, d).
Now given a collection of quasicategories (Ci )i∈I , there is a commutative

square of quasicategories

∏
F TwArr(Ci )

∼= TwArr(
∏

FCi )

∏
F (Ci × Copi )

∼=
(
∏

FCi ×∏
FC

op
i ),

where the vertical arrows are right fibrations. The top horizontal arrow is an
isomorphism by Lemma 3.9 and the fact that n-simplices in TwArr(

∏
FCi )

are 2n + 1-simplices in
∏

FCi . Given c, d ∈ ∏
FCi represented by (ci ) and

(di ), there is a pullback square

Map∏
FCi

(c, d) TwArr(
∏

FCi )

∗ (c,d) ∏
FCi ×∏

FC
op
i .

Further, since ultraproducts commute with pullbacks in simplicial sets, there
is a pullback square

∏
F Map(ci , di )

∏
F TwArr(Ci )

∗ [(ci ,di )] ∏
F (Ci × Copi ).

It follows that there is an isomorphism of Kan complexes

Map∏
FCi

(c, d) ∼=
∏

F Map(ci , di ).

Proposition 3.12 has the following consequences:

Corollary 3.13 For c, d ∈ ∏
FCi represented by (ci ) and (di ), there is an

isomorphism

[c, d] ∼=
∏

F [ci , di ],

where the ultraproduct is computed in the category of sets.
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Proof This is due to the fact that π0 commutes with filtered colimits as S0 is
compact.

Corollary 3.14 The ultraproduct of fully faithful functors between ∞-
categories is fully faithful.

There is also a stable version of Proposition 3.12. Let Sp be the∞-category
of spectra.

Corollary 3.15 With notation as in Proposition 3.12, if the ∞-categories Ci
are stable, then so is the ultraproduct

∏
FCi and there is an equivalence of

mapping spectra

Hom∏
FCi (c, d) �

∏
F Hom(ci , di ),

where the ultraproduct on the right side is computed in Sp.

Proof Products of stable∞-categories are stable by [36, Theorem 1.1.4.3] and
filtered colimits of stable ∞-categories are stable by [36, Theorem 1.1.4.6].

Lemma 3.16 Let (Ci )i∈I be a collection of ∞-categories. The ultraproduct∏
FCi enjoys the following properties:

(1) For a finite simplicial set K , there is a canonical equivalence of ∞-
categories

Fun(K ,
∏

FCi ) �
∏

F Fun(K , Ci ).

(2) Let K be a finite simplicial set, assume we are given for all i ∈ I , ρi : K →
Ci . There is a canonical equivalence

(
∏

FCi )/
∏

Fρi �
∏

FCi/ρi ,

where
∏

Fρi : K →∏
FCi .

(3) If each Ci has finite (co)limits then
∏

FCi has finite (co)limits.
(4) For any U ∈ F , the canonical map

∏
UCi → ∏

FCi preserves all finite
(co)limits that exist.

(5) If the functors fi : Ci → Di preserve finite (co)limits then the ultraproduct

∏
F fi :

∏
FCi −→

∏
FDi

preserves all finite (co)limits that exist.
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(6) Let fi : Ci → Di be a collection of (co)Cartesian fibrations. Then
∏

F fi
is a (co)Cartesian fibration.

Proof Part (1) follows from the compactness of K in sSet. Recall that Cat∞
is compactly generated so filtered colimits commute with pullbacks. As a
composition of products and filtered colimits, ultraproducts commute with
pullbacks. Now Part (2) follows from the pullback square:

C/ρ Fun(K �, C)

∗
ρ

Fun(K , C).

For Parts (3), (4), and (5), in view of (2) and Lemma 3.11, it is enough to show
that

∏
FCi has an initial object, the map from the product to the ultraproduct

preserves the initial object, and that the initial object is preserved by
∏

F fi .
For each i ∈ I , let ∅i ∈ Ci be a choice of initial object. We will show that [∅i ]
is initial in

∏
FCi . Indeed if ti ∈ Ci , Proposition 3.12 gives equivalences

Map∏
FCi

([∅i ], t) �
∏

F Map(∅i , t) �
∏

F∗ � ∗.

To finish off Parts (4) and (5) note that the initial object is sent to the initial
object under both maps.

The proof of Part (6) is similar to the proof of the previous parts and uses
Part (1) and the fact that ultraproducts respect pullbacks.

Corollary 3.17 Given a collection of adjunctions ( fi : Ci � Di : gi )i∈I and
an ultrafilter F on I , there is an induced adjunction

∏
F fi : ∏FCi

∏
FDi :∏Fgi

such that the following diagram commutes:

∏
ICi

∏
fi

[−]

∏
IDi∏

gi

[−]
∏

FCi

∏
F fi ∏

FDi .∏
F gi

Proof By [38, Definition 5.2.2.1], an adjunction between ∞-categories is a
Cartesian and coCartesian fibration over �1. Since

∏
F�1 � �1 by Example

2.9 and Lemma 3.9, the result follows from Part (6) of Lemma 3.16.
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Lemma 3.18 Suppose (Ji ) is a collection of filtered categories, then
∏

F Ji is
also filtered.

Proof It is enough to show that for any finite simplicial set K the map

Fun0(K �,
∏

F Ji )→ Fun0(K ,
∏

F Ji ),

given by restriction, is surjective. The subscript 0 ismeant to denote that we are
taking the 0-simplices of the simplicial set of functors. The claim now follows
from the proof of Part (1) of Lemma 3.16, which establishes an isomorphism
of simplicial sets

Fun(K ,
∏

F Ji ) ∼=
∏

F Fun(K , Ji )

for any finite simplicial set K and the fact that the ultraproduct of surjective
maps is surjective.

In contrast to Lemma 3.16, the ultraproduct in Cat∞ does not behave well
with respect to infinite (co)limits. It does not send presentable∞-categories
to presentable∞-categories. We work the example of the ultraproduct of the
category of sets at a non-prinicipal ultrafilter in order to clarify these issues.

Example 3.19 Consider
∏

F Set, the ultraproduct of the category of sets over
a non-principal ultrafilterF . We will produce an infinite tower in this category
with no limit.

Let N̂ = [N]F . This object has the property that

Map∏
F Set(∗, N̂) ∼=

∏
FN

as sets. Note that
∏

FN is linearly ordered by Łoś’s theorem. However, unlike
N, it has the property that an element may have an infinite number of elements
less than it. In fact, every element of N ⊂ ∏

FN is less than every element

of (
∏

FN) � N. The successor function applied to each coordinate
∏

I N
s−→

∏
I N induces a map N̂

s−→ N̂. Consider the diagram

. . .
s−→ N̂

s−→ N̂.

Assume that a limit exists and call it X , then X has the property that

Map∏
F Set(∗, X) ∼= limMap∏

F Set(∗, N̂) ∼= lim
∏

FN.
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There is an isomorphism

lim
∏

FN ∼= (∏
FN

)
� N.

To see this note that it is clear that N is not in the limit. Every other element
can have 1 subtracted from it to get another element in

(∏
FN

)
� N. That is,

the map is an isomorphism on the subset
(∏

FN
)

� N.
Finally, the limit (assuming it exists) X must be nonempty and thus must

be the image of a sequence (Xi ) ∈ ∏
I Set in which the sets Xi can be taken

to be nonempty. We have a canonical map

g : X −→ N̂

to the first N̂ in the sequence. Since

Map∏
F Set(X, N̂) ∼=

∏
F MapSet(Xi , N),

the map g can be represented by a collection of maps gi : Xi → N. Let ni be
the smallest natural number in the image of gi . The image of

Map∏
F Set(∗, X) −→ (∏

FN
)

� N

cannot hit an element smaller than [ni ] in ∏
FN as the following commutes

∏
I MapSet(∗, Xi )

∏
I N

Map∏
F Set(∗, X)

∏
FN.

Thus, the map

Map∏
F Set(∗, X) −→ (∏

FN
)

� N

is not an isomorphism and X cannot be the limit.

Remark 3.20 In light of this example, the readermightwonder if the ultraprod-
uct internal to the ∞-category PrL of presentable ∞-categories and colimit
preserving functors is better behaved than

∏
F . This is not the case: Suppose

F is a non-principal ultrafilter on a set I and (Ci )i∈I is a collection of pre-
sentable∞-categories.We claim that

∏pr
FCi is contractible,where

∏pr
F denotes
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the ultraproduct internal to PrL . Denote by 0pr = �0 the initial presentable
∞-category and set

Ci,U =
{
Ci i ∈ U

0pr i /∈ U.

By [27, Remark 4.3.11], products and coproducts are canonically equivalent
in PrL . So we get

∏pr

FCi � colimU∈F
∐

i∈U
Ci � colimU∈F

∐
i∈I

Ci,U �
∐

i∈I
colimU∈F Ci,U .

Now since F is a non-principal, for any i ∈ I , there exists U ∈ F with i /∈ U ,
so we get

∏pr

FCi
∼=

∐
i∈I

0pr ∼= 0pr.

Lemma 3.21 Let (Ci )i∈I and (Di )i∈I be collections of symmetric monoidal
∞-categories, let ( fi : Ci → Di )i∈I be a collection of symmetric monoidal
functors, and let F be an ultrafilter on I . The ultraproducts

∏
FCi and

∏
FDi

are symmetric monoidal and the induced functor

∏
F fi :

∏
FCi →

∏
FDi

is symmetric monoidal. Also, the canonical map

[−]F :
∏

I
Ci −→

∏
FCi

is symmetric monoidal.

Proof The∞-category of symmetric monoidal∞-categories and symmetric
monoidal functors is given as the category CAlg(Cat∞) of commutative alge-
bra objects in Cat∞. The forgetful functor CAlg(Cat∞) → Cat∞ preserves
products and filtered colimits by [36, Proposition 3.2.2.1] and [36, Corollary
3.2.3.2].

3.3 Compactly generated ultraproducts

The problems with the ultraproduct of∞-categories exposed in Example 3.19
are due to the fact that the ultraproduct is being taken inCat∞. In this subsection
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we study the ultraproduct in Catω∞, the ∞-category of compactly generated
∞-categories and functors which preserve colimits and compact objects. We
will call the ultraproduct in Catω∞ the compactly generated ultraproduct and
denote it by

∏ω
F (−).

Associating to a compactly generated∞-category its subcategory of com-
pact objects induces a functor

(−)ω : Catω∞ Cat∞

that preserves limits and filtered colimits (see [25, Lemma A.4]). In fact, this
functor induces an equivalence between Catω∞ and the ∞-category of small
idempotent complete∞-categories with finite colimits and finite colimit pre-
serving functors [25, Proposition A.1]. The inverse equivalence is given by
Ind(−). Note that the forgetful functor Catω∞ → Cat∞ does not preserve fil-
tered colimits or infinite products, so the compactly generated ultraproduct
is not the ultraproduct in Cat∞. Moreover, recall that we always assume the
symmetric monoidal structure ⊗ on a compactly generated∞-category C to
preserve compact objects, i.e., if X, Y ∈ Cω, then X ⊗ Y ∈ Cω.

Proposition 3.22 Let (Ci )i∈I be a collection of compactly generated ∞-
categories and let F be an ultrafilter on I . There is an equivalence

∏ω

FCi � Ind
∏

FC
ω
i

between the compactly generated ultraproduct and the Ind-category of the
ultraproduct of the categories of compact objects.

Proof The∞-category
∏ω

FCi is compactly generated by definition. By [25,
Proposition A.1], it suffices to determine its subcategory of compact objects.
Since (−)ω preserves filtered colimits and products [25, Lemma A.4], we see
that

(
∏ω

FCi )
ω �

∏
FC

ω
i

and the claim follows.

For an∞-category C, let

Pre(C) = Fun(Cop,Top)

be the ∞-category of presheaves on C. Consider the natural inclusion
ι : ∏FCω

i →
∏

FCi . The Yoneda embedding

∏
FCi

y−→ Pre(
∏

FCi )

123



764 T. Barthel et al.

may be restricted along ι to give a map

yι :
∏

FCi −→ Pre(
∏

FC
ω
i ).

Since ι preserves finite colimits by Part (5) of Lemma 3.16, yι factors through
Ind(

∏
FCω

i ) �∏ω
FCi to give map

m :
∏

FCi −→
∏ω

FCi .

Wemayuse this to build a “localizationmap” from the product to the compactly
generated ultraproduct. We will show that the composite

∏
I
Ci

[−]−→
∏

FCi
m−→

∏ω

FCi .

is well-behaved.

Lemma 3.23 Let Ci ∈ Catω∞ be a collection of compactly generated ∞-
categories indexed by some set I . If

(1) Ci is stable for all i ∈ I or
(2) Ci is symmetric monoidal for all i ∈ I ,

then so is
∏ω

FCi for any ultrafilter F on I .

Proof For Part (1), Corollary 3.15 implies that ultraproducts of stable ∞-
categories are stable and it follows from [36, Theorem 1.1.3.6] that C stable
implies that Ind(C) is stable. Part (2) follows from Lemma 3.21 and [36,
Theorem 4.8.1.13].

Before we can state the next proposition, we recall some basic facts about
lax symmetric monoidal functors. Let C and D be symmetric monoidal ∞-
categories. In the notation of [36], a map

C⊗ D⊗

N(Fin∗)

is lax symmetric monoidal if it sends inert maps to inert maps. Let
Funlax(C⊗,D⊗) ⊂ FunN(Fin∗)(C⊗,D⊗) be the full subcategory consisting

of lax symmetric monoidal functors. Let Fininj∗ denote the subcategory of Fin∗
spanned by all objects together with those morphisms f : 〈m〉 → 〈n〉 such
that | f −1(i)| ≤ 1 for 1 ≤ i ≤ n. We say that F ∈ Funlax(C⊗,D⊗) is unital if
F sends coCartesian edges over Fininj∗ to coCartesian edges.
The following lemma is an easy application of [1, Lemma 2.16]:
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Lemma 3.24 Let B be a small symmetric monoidal ∞-category that admits
finite colimits and such that the symmetric monoidal structure for B dis-
tributes over finite colimits. Let M be a (locally small) symmetric monoidal
∞-category that admits finite colimits. Let i : B → M be fully faithful sym-
metric monoidal left exact functor. Then there exists a unital lax symmetric
monoidal functor i⊗� : M→ Ind(B) such that the underlying functor from M
to Ind(B) is the restriction of the Yoneda embedding.

Proof We are going to apply [1, Lemma 2.16] to the case V = Ind(B). First
note that [1, Lemma 2.16] gives a unital lax symmetric monoidal functor if
Conditions (1)–(4) of the lemma are satisfied. Conditions (1) and (3) follow
from [36, Theorem 4.8.1.13]. Since i is symmetric monoidal, we have i(1B) ∼=
1M. Since i is fully faithful, the functor

B/1B → B/1M

is an equivalence and thus final. This gives condition (4). To prove condition
(2), we shall show that, for M ∈M, BM is filtered (and in particular sifted).
Indeed, let ρ : K → BM be a finite diagram. SinceB admits finite colimits and
i preserves colimits, ρ can be extended to a colimit diagram ρ : K � → BM .

Corollary 3.25 Let (Ci )i∈I be a collection of symmetric monoidal compactly
generated∞-categories and let F be an ultrafilter on the set I . The map

m :
∏

FCi −→
∏ω

FCi

is a unital symmetric monoidal functor.

Proof Set i : B→M to be the inclusion

∏
FC

ω
i →

∏
FCi

in Lemma 3.24 so thatm = i⊗� . This implies thatm is unital and lax symmetric
monoidal.

Finally, to prove that m is symmetric monoidal, we must verify condition
(5) in [1, Lemma 2.16]. We must show that if x1 and x2 are objects in

∏
FCi ,

then the functor

⊗
: (

∏
FC

ω
i )/x1 × (

∏
FC

ω
i )/x2 → (

∏
FC

ω
i )/(x1⊗x2)
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is cofinal. By Theorem 4.1.3.1 in [38], it is enough to show that for every
x0 ∈ (

∏
FCω

i )/(x1⊗x2) the groupoidification of

Dx0,x1,x2 =
(
(
∏

FCω
i )/x1 × (

∏
FCω

i )/x2

)
×(

∏
FCω

i )/(x1⊗x2)
(
∏

FCω
i )x0//(x1⊗x2)

is weakly contractible. For this, it is enough to show that Dx0,x1,x2 is filtered.
Since the property of being filtered is preserved by ultraproducts by Lemmas
3.18, 3.16 (2) and the fact that filtered colimits commute with pullbacks imply
that we are reduced to the case where F is principal.

Put differently, let C be a compactly generated symmetric monoidal ∞-
category. Given a pair of objects x1, x2 ∈ C and an object x0 ∈ (Cω)/(x1⊗x2),
we must show that the∞-category

Dx0,x1,x2 =
(
(Cω)/x1 × (Cω)/x2

)×(Cω)/(x1⊗x2)
(Cω)x0//(x1⊗x2)

is filtered.Wewill do this by expressingDx0,x1,x2 as a filtered colimit of filtered
∞-categories.

To do this, we will first show that the functor

F : C → (Cat∞)/Cω

x �→ Cω
/x

commutes with filtered colimits. Indeed, given a filtered diagram ρ : J → C,
the canonical map

colimJ (F ◦ ρ)→ F(colimJ ρ)

is a map between two right fibrations over Cω and thus can be checked to be an
equivalence fiberwise. Thus it suffices to check that this map is an equivalence
at the fiber over c ∈ Cω. Since filtered colimits commute with pullbacks in
Cat∞, the map corresponding to the fiber over c ∈ Cω is

colim j∈J MapC(c, x j )→ MapC(c, colim j∈J x j ),

which is an equivalence by the compactness of c. Further, since the forgetful
functor

(Cat∞)/Cω → Cat∞

commutes with filtered colimits, the functor sending

x �→ Cω
/x
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commutes with filtered colimits as a functor to Cat∞.
Given x0, the∞-category Dx0,x1,x2 is functorial in x1 and x2 and thus can

be considered as a functor

Dx0,−,− : C × C → Cat∞ .

Further, since filtered colimits commute with pullbacks in Cat∞ and with
tensor products in C, the functor Dx0,−,− commutes with filtered colimits.
Since a filtered colimit of filtered∞-categories is a filtered∞-category, we
can reduce to the case that x1 and x2 are in the essential image of the embedding
Cω → C. In this case the∞-category Dx0,x1,x2 has a terminal object

(
(x1

Idx1−−→ x1, x2
Idx2−−→ x2), x0 → x1 ⊗ x2

Idx1⊗x2−−−−→ x1 ⊗ x2

)
,

which concludes the proof.

In certain cases, collections of adjunctions between compactly generated
∞-categories give rise to adjunctions of compactly generated ultraproducts.

Lemma 3.26 If fi : Ci � Di : gi is a collection of adjunctions between com-
pactly generated∞-categories indexed by I such that the left adjoints preserve
compact objects, then there exists an induced adjunction

∏ω
F fi : ∏ω

FCi
∏ω

FDi : gF

for any ultrafilter F on I such that the following diagram commutes:

∏
FCi

∏
F fi

m

∏
FDi∏

F gi

m

∏ω
FCi

∏ω
F fi ∏ω

FDi .
gF

Proof By assumption and Lemma 3.16

∏
F f ω

i :
∏

FC
ω
i −→

∏
FD

ω
i

preserves finite colimits, so
∏ω

F fi preserves all colimits. The existence of the
right adjoint gF follows.

Let [Ti ] ∈∏
FCω

i and [di ] ∈∏
FDi . There are equivalences
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Map∏ω
FCi

([Ti ], gF (m([di ]))) � Map∏ω
FDi

((
∏

F fi )([Ti ]), m([di ]))
� Map∏

F Di
([ fi (Ti )], [di ])

� Map∏
FCi

([Ti ], [gi (di )])
� Map∏ω

FCi
([Ti ], m[gi (di )]).

The commutativity of the other square follows from the naturality of m.

Lemma 3.27 Let (Ci )i∈I and (Di )i∈I be collections of symmetric monoidal
compactly generated∞-categories and let ( fi)i∈I be a collection of symmetric
monoidal functors that preserve colimits and compact objects. The compactly
generated ultraproduct of the collection ( fi )i∈I

∏ω

F fi :
∏ω

FCi →
∏ω

FDi

is a symmetric monoidal functor that preserves colimits and compact objects.

Proof Restricting
∏ω

F fi to compact objects gives the functor

∏
F f ω

i :
∏

FC
ω
i →

∏
FD

ω
i ,

which is symmetric monoidal by Lemma 3.21 and preserves finite colimits by
Part (5) of Lemma 3.16. Applying Ind(−) to this symmetric monoidal functor
yields

∏ω
F fi , which is symmetric monoidal by [36, Corollary 4.8.1.13].

Note that for c ∈∏ω
FCi a compact object, we have an equivalence c � [ci ]

for some (ci ) ∈∏
ICω

i .

Lemma 3.28 Let c, d ∈ ∏ω
FCi be compact objects such that c � [ci ] and

d � [di ] with ci , di ∈ Cω
i . Then there is an equivalence

Map(c, d) �
∏

F Map(ci , di ),

where the ultraproduct on the right is computed in the∞-category of spaces.
The same result holds for mapping spectra in case the categories are stable.

Proof Because c and d are compact, we may compute the mapping space in
the∞-category (

∏ω
FCi )

ω �∏
FCω

i . The result then follows from Proposition
3.12 and Corollary 3.15.

Lemma 3.29 The compactly generated ultraproduct of fully faithful functors
between compactly generated∞-categories is fully faithful.

Proof The result follows from Corollary 3.14 and the fact that Ind preserves
fully faithful functors by [38, Proposition 5.3.5.11(1)].
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3.4 Protoproducts of compactly generated ∞-categories

In this subsection we construct a variation of the compactly generated
ultraproduct that takes into account filtrations on compactly generated ∞-
categories.

Definition 3.30 A compact filtration (C, F∗) of a compactly generated ∞-
category C is a sequence of fully faithful subcategories (closed under
equivalences and retracts)

F0C F1C F2C . . . Cω

over C such that

(1) the initial object ∅ is in F0C
(2) colim FkC � Cω

(3) there exists a function α : N → N such that, for a diagram of the form
c ← e → d in FkC, the pushout

c
∐

e

d ∈ Cω

lies in Fα(k)C.

If (C, F∗) is a compact filtration, C is stable, and for c ∈ FkC

�−1c ∈ Fα(k)C,

then we call the compact filtration a stable compact filtration. If (C, F∗) is a
compact filtration, C is symmetric monoidal, the tensor unit of C is contained
in F0C, and for c, d ∈ FkC

c ⊗ d ∈ Fα(k)C,

then we call the compact filtration a symmetric monoidal compact filtration.

Remark 3.31 By [38, Proposition 4.4.2.2], if a functionα exists for the pushout
then this implies the existence of such a function for any finite diagram cate-
gory.

Definition 3.32 A collection of ∞-categories equipped with (stable) (sym-
metricmonoidal) compact filtrations is a (stable) (symmetricmonoidal) filtered
collection if there is a single function α that satisfies the conditions of the def-
inition for each of the compact filtrations.
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Definition 3.33 Let F be an ultrafilter on I . We define the protoproduct of a
filtered collection of compactly generated∞-categories (Ci , Fi,∗)i∈I to be

∏�
F (Ci , Fi,∗) = Ind colimk

∏
F Fi,kCi .

Lemma 3.34 There is an equivalence of∞-categories

(
∏�

F (Ci , Fi,∗))ω � colimk

∏
F Fi,kCi .

Proof This follows from the fact that

colimk

∏
F Fi,kCi

is idempotent complete and has finite colimits by Remark 3.31.

Example 3.35 The compactly generated ultraproduct is the special case of the
protoproduct for which Fi, jCi = Cω

i for all j .

Lemma 3.36 Let (Ci , Fi,∗) be a filtered collection of compactly generated
∞-categories. Then there is a fully faithful functor

ι : ∏�
F (Ci , Fi,∗)

∏ω
FCi .

Proof For the categories of compact objects this follows from Corollary 3.14
and Ind preserves fully faithful functors by [38, Proposition 5.3.5.11(1)].

Lemma 3.37 The protoproduct of a (stable) (symmetric monoidal) filtered
collection of compactly generated ∞-categories (Ci , Fi,∗)i∈I is compactly
generated (and stable) (and symmetric monoidal).

Proof The∞-category

colimk

∏
F Fi,kCi

is a subcategory of
∏

FCω
i that is closed under finite colimits and retracts by

Remark 3.31.
By Lemma 3.36, the natural inclusions induce the fully faithful functor

∏�
F (Ci , Fi,∗) ι ∏ω

FCi .

Since the target is symmetric monoidal by Lemma 3.23, [36, Proposition
2.2.1.1] implies that it suffices to show that

∏�
F (Ci , Fi,∗) is closed under the
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symmetricmonoidal structure on
∏ω

FCi . But this follows from the assumptions
on the filtrations Fi,∗.

From the characterization of stable ∞-categories in
[36, Corollary 1.4.2.27(2)], stability follows from the fact that desuspension
maps

colimk

∏
F Fi,kCi

to itself and thus desuspension is an equivalence

�−1 : colimk

∏
F Fi,kCi

�−→ colimk

∏
F Fi,kCi .

Definition 3.38 Let (Ci , Fi,∗)i∈I and (Di , Gi,∗)i∈I be filtered collections of
compactly generated∞-categories. A collection of colimit preserving func-
tors

( fi : Ci → Di )i∈I

is called a collection of filtration preserving functors if there exists a single
function β : N → N such that

fi (Fi,kCi ) ⊆ Gi,β(k)Di

for all i and all k.

A collection of filtration preserving functors ( fi : Ci → Di ) induces a
functor

∏�

F fi :
∏�

F (Ci , Fi,∗)→
∏�

F (Di , Gi,∗).

Lemma 3.39 A collection of fully faithful filtration preserving functors
( fi : Ci ↪→ Di ) induces a fully faithful functor

∏�

F fi :
∏�

F (Ci , Fi,∗) ↪→
∏�

F (Di , Gi,∗).

Proof Combining Lemma 3.29 and Lemma 3.36, we have a commutative
diagram
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∏�
F (Di , Gi,∗)

∏ω
FDi

∏�
F (Ci , Fi,∗)

∏ω
FCi

in which the horizontal arrows and right vertical arrow are fully faithful. This
implies that the left arrow is fully faithful.

Proposition 3.40 Let (Ci , Fi,∗Ci )i∈I and (Di , Gi,∗Di )i∈I be filtered collec-
tions of compactly generated ∞-categories and assume that we have a
collection of filtration preserving functors

( fi : Ci −→ Di )i∈I .

Then the protoproduct of these functors

∏�

F fi :
∏�

F (Ci , Fi,∗) −→
∏�

F (Di , Gi,∗)

preserves colimits and has a right adjoint g
Fi,∗
Gi,∗ that preserves filtered colimits.

Proof It suffices to prove that the functor

(
∏�

F fi )
ω : (

∏�

F (Ci , Fi,∗))ω = colimk

∏
F Fi,kCi → colimk

∏
FGi,kDi

preserves finite colimits. Since it clearly preserves the initial object, it is enough
to show that it preserves pushouts. Let K be the span diagram. Since K is
compact, there exists a k and U ∈ F such that there are factorizations

∏
U Fi,kCi

∏
F Fi,kCi

K colimk
∏

F Fi,kCi .

By the definition of a filtered collection, there is a factorization

K � ∏
U Fi,α(k)Ci

∏
UCω

i

K
∏

U Fi,kCi
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and the map K � →∏
UCω

i is the colimit. The canonical map

∏
U

Fi,α(k)Ci → colimk

∏
F Fi,kCi

preserves the finite colimits that exist by Lemma 3.16. Also, the map

∏
U

fi :
∏

U
Fi,α(k)Ci →

∏
U

Gi,β(α(k))Di

preserves colimits that exist by assumption. Thus the composite

K � →
∏

U
Fi,α(k)Ci →

∏
U

Gi,β(α(k))Di → colimk

∏
FGi,kDi

is the pushout diagram and
∏�

F fi sends pushouts to pushouts. By [38, Propo-

sition 5.5.7.2], since
∏�

F fi sends compact objects to compact objects, the right

adjoint g
Fi,∗
Gi,∗ preserves filtered colimits.

Remark 3.41 When the compact filtrations are clear from context, we will just
write g for the right adjoint to

∏�
F fi .

Corollary 3.42 With notation as in Proposition 3.40, if the categories are

stable then g
Fi,∗
Gi,∗ preserves all colimits.

Example 3.43 Let (Ci , Fi,∗)i∈I be a filtered collection of compactly generated
∞-categories and let (Ci )i∈I be the same categories with the trivial filtration
of Example 3.35. In this case the identity maps are a collection of filtration
preserving functors (Ci , Fi,∗)→ Ci inducing

ι : ∏�
F (Ci , Fi,∗)

∏ω
FCi .

We will always refer to the right adjoint to this map as nFi,∗ or just n when the
filtration is clear from context.

Corollary 3.44 With the notation of Proposition 3.40, both the solid square
and the dashed square commute

∏�
F (Ci , Fi,∗)

∏�

F fi

ι ∏ω
FCi

n
∏ω

F fi

∏�
F (Di , Gi,∗)

g
Fi,∗
Gi,∗

ι ∏ω
FDi

g

n

and g
Fi,∗
Gi,∗ preserves filtered colimits.
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Proof Each of these adjunctions is a special case of Proposition 3.40. The
horizontal adjunctions are a special case by Example 3.35. The solid diagram
commutes by naturality and the commutativity of the dashed diagram follows.

Lemma 3.45 Let (Ci , Fi,∗)i∈I be a filtered symmetric monoidal collection of
compactly generated∞-categories. The protoproduct

∏�

F (Ci , Fi,∗)

is a full symmetric monoidal subcategory of
∏ω

FCi with unital lax symmetric
monoidal right adjoint n.

Proof By Lemma 3.36, the natural inclusions induce the fully faithful functor

∏�
F (Ci , Fi,∗) ι ∏ω

FCi .

Since the target is symmetric monoidal by Lemma 3.23, it suffices to show that∏�
F (Ci , Fi,∗) is closed under the symmetric monoidal structure on

∏ω
FCi , see

[36, Proposition 2.2.1.1]. This follows from the assumptions on the filtrations
Fi,∗.
Since ι : ∏�

F (Ci , Fi,∗) → ∏ω
FCi is symmetric monoidal, the right adjoint

n inherits a natural structure of a lax symmetric monoidal functor by [36,
Corollary 7.3.2.7]. Finally, n preserves units because the tensor unit of Ci is
contained in Fi,0Ci for all i ∈ I .

Corollary 3.46 Let (Ci , Fi,∗)i∈I and (Di , Gi,∗)i∈I be filtered symmetric
monoidal collections of compactly generated ∞-categories and let ( fi )i∈I
be a filtration preserving collection of symmetric monoidal functors. The pro-
toproduct

∏�
F (Ci , Fi,∗)

∏�

F fi ∏�
F (Di , Gi,∗)

is a symmetric monoidal functor with unital lax symmetric monoidal right
adjoint g.

Proof By Corollary 3.44, we have a commutative diagram

∏ω
FCi

∏ω
F fi ∏ω

FDi

∏�
F (Ci , Fi,∗) ∏�

F fi

ι

∏�
F (Di , Gi,∗).

ι
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By Lemma 3.27, the top arrow is symmetric monoidal. Since the diagram
commutes and the vertical arrows are fully faithful and symmetric monoidal
by Lemma 3.45, the bottom arrow must be symmetric monoidal.

The right adjoint g is unital lax symmetric monoidal by the proof of the
same property for the right adjoint n in Lemma 3.45.

Corollary 3.47 Let (Ci , Fi,∗) be a filtered symmetric monoidal collection of
compactly generated∞-categories. Then the composite

∏
I
Ci
[−]F−→

∏
FCi

m−→
∏ω

FCi
n−→

∏�

F (Ci , Fi,∗)

is lax symmetric monoidal and preserves the unit. In particular, the composite
sends commutative monoids to commutative monoids.

Proof This follows from Lemma 3.21, Corollary 3.25, and Lemma 3.45.

3.5 Filtrations on module categories

In this subsection and the next, we study three different filtrations on the∞-
category of modules over a ring spectrum that will play an important role later
on. These three filtrations are stable compact filtrations in the sense of the
previous subsection.

• The cell filtration, in which a compact module is in filtration k if and only
if it can be built out of at most k cells.

• The cell-dimensionfiltration,where both the number of cells and the dimen-
sion of the cells are bounded.

• The Pic-filtration, in which a compact module is in filtration k if and only
if it can be built out of at most k invertible modules.

Informally speaking, the difference between the first and third filtration
comes from the fact that invertible objects can, in general, have many cells.
This is the case, for example, in the∞-category of E(n)-local spectra at small
primes.

We will begin with some recollections regarding module categories. Let
R be an E1-ring spectrum and let ModR be the stable ∞-category of mod-
ules over R. A cell is an object of the form �n R for some n ∈ Z. For any
n ∈ N ∪ {∞}, if R is an En-ring spectrum, then ModR is En−1-monoidal. If
n > 1, then the correspondingmonoidal structure will be denoted by⊗ = ⊗R .
Moreover, ModR is compactly generated by the ⊗-unit R. In fact, this prop-
erty characterizes module categories of ring spectra by the following derived
version of Morita theory, see [53, Theorem 3.3.3] and [36, Theorem 7.1.2.1].
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Theorem 3.48 (Schwede–Shipley) If C is a compactly generated stable ∞-
category with compact generator P, then there is an equivalence

HomC(P,−) : C � ModEndP

with inverse given by −⊗EndP P. Moreover, if C is symmetric monoidal with
unit P and with the property that ⊗ commutes with colimits in each variable,
then P is an E∞-algebra and this is an equivalence of symmetric monoidal
∞-categories.

We can now construct three filtrations on the∞-category of modules over a
ring spectrum that we will use to build three different types of protoproducts.
An object in ModR is said to be built out of at most 1 cell if it is equivalent
to a suspension of R or zero. Inductively, we say that an object in ModR is
built out of at most k cells if it is equivalent to the cofiber of a map between an
object built out of at most k1 cells and an object built out of at most k2 cells,
where k1 + k2 ≤ k.

Definition 3.49 Let CellR be the filtration on ModR in which CellR,k ModR
consists of retracts of objects that can be built out of at most k cells. For a
collection of module categories (ModRi )i∈I equipped with this filtration and
an ultrafilter F on I , we will denote the protoproduct by

∏�

F ModRi =
∏�

F (ModRi ,CellRi ).

We will simply refer to this as the protoproduct of the module categories.

There is a finer filtration on ModR given by bounding both the number and
the dimension of cells. Every compact R-module is a retract of a finite cell
R-module. The dimension of a finite cell R-module is the maximum of the
absolute value of the dimension of the top cell and the absolute value of the
dimension of the bottom cell. The kth filtration step is given by R-modules that
are retracts of finite cell R-modules for which the maximum of the dimension
and number of cells is bounded by k.

Definition 3.50 Let DimCellR be the filtration on ModR described above
given by the maximum of the number of cells and the dimension. For a col-
lection of module categories (ModRi )i∈I equipped with this filtration and an
ultrafilter F on I , we will denote the protoproduct by

∏��

F ModRi =
∏�

F (ModRi ,DimCellRi ).

We will call this the bounded protoproduct of the module categories.
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If R is an E∞-ring spectrum, then the ∞-category ModR is symmetric
monoidal and we can define the Picard groupoid Pic(R) ⊆ ModR of R to be
the∞-groupoid of invertible objects inModR . In fact, Pic is a functor from the
∞-category of symmetric monoidal ∞-categories and symmetric monoidal
functors to Top. By [45, Proposition 2.2.3], the functor Pic preserves filtered
colimits and limits, therefore we have the following lemma:

Lemma 3.51 The functor Pic preserves ultraproducts.

Note that every suspension of R is invertible. The invertible objects can be
used to construct a third filtration on ModR , which is coarser than CellR .

Definition 3.52 The Pic-filtration PicCellR on ModR is defined analogously
to the cell filtration in Definition 3.49, but allowing arbitrary objects in Pic(R)

as cells instead of suspensions of R. For a collection of module categories
(ModRi )i∈I equipped with this filtration and an ultrafilter F on I , we will
denote the protoproduct by

∏Pic

F ModRi =
∏�

F (ModRi ,PicCellRi ).

We will call this the Pic-generated protoproduct of the module categories.

Remark 3.53 More generally, we could construct a filtration in which the cells
are taken from any submonoid of Pic(R) which is closed under suspensions.
The filtrations CellR and PicCellR are the minimal and maximal cases, respec-
tively.

Remark 3.54 Assume that (Ci )i∈I is a collection of symmetric monoidal com-
pactly generated∞-categories with compact units. All three of the filtrations
make sense in this more general setting. The obvious analogues of the cell
filtration and cell-dimension filtration reduce to constructions in module cat-
egories as they only see the cellular objects. However, the Pic-filtration is
interesting. Because the unit is compact, the invertible objects are compact.
Thus we may define PicCell(Ci ) to be the filtration with kth filtration step
retracts of objects built out of at most k invertible objects and define

∏Pic

F Ci =
∏�

F (Ci ,PicCell(Ci )).

Lemma 3.55 Let (ModRi )i∈I be a collection of module categories over E∞-
rings. Then

Pic(
∏Pic

F ModRi ) �
∏

F PicModRi .
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Proof Since invertible objects of ModRi are compact, we have PicModRi =
PicModω

Ri
. It follows from the definition that

PicCellRi ,0 ModRi ⊇ PicModRi .

Thus the right hand side is contained in the left hand side.
To prove the other inclusion, first note that the unit of

∏Pic
F ModRi is com-

pact, so all invertible objects in this∞-category are compact aswell. Therefore,
it suffices to consider

Pic(colimk

∏
FPicCellRi ,k ModRi ),

where PicCellRi ,k ModRi is the k-th filtration step in the Pic-filtration on
ModRi . However, this is a subspace of Pic

∏
F Modω

Ri
, which in turn is the

same as
∏

F PicModRi , as Pic preserves ultraproducts by Lemma 3.51.

3.6 Protoproducts of module categories

We analyze the protoproducts associated to the filtrations of the previous sec-
tion. Let (Ri )i∈I be a collection of E∞-ring spectra. The identity maps on the
∞-categories (ModRi )i∈I induce filtration preserving symmetric monoidal
functors of stable symmetric monoidal filtered collections

(ModRi ,DimCellRi ) −→ (ModRi ,CellRi ) −→ (ModRi ,PicCellRi )

inducing, by Corollary 3.46, symmetric monoidal functors

∏��
F ModRi

∏�

F IdModRi ∏�
F ModRi

∏�

F IdModRi ∏Pic
F ModRi .

By Proposition 3.40, these functors are left adjoints. By Corollary 3.44, we
have a commutative diagram in which the left adjoints commute with the left
adjoints and the right adjoints commute with the right adjoints

∏ω
F ModRi

n
n

n

∏��
F ModRi

ι

∏�

F IdModRi

∏�
F ModRi ∏�

F IdModRi

ι

∏Pic
F ModRi .

ι

(3.56)

The right adjoints are unital lax symmetric monoidal functors. Since the func-
tors ι are fully faithful functors with right adjoints, the ∞-categories on the
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bottom row are all localizing subcategories of
∏ω

F ModRi . We will explicitly
describe the right adjoints as colocalizations.

In
∏ω

F ModRi there are three natural notions of “homotopy groups”. Let
R = [Ri ] ∈∏ω

F ModRi be the unit. For [ni ] ∈ ZF =∏
FZ, let

�[ni ]R = [�ni Ri ] ∈
∏ω

F ModRi .

Definition 3.57 Let f : M → N be a map in
∏ω

F ModRi . Then

• we say that f is a π[∗]-equivalence if [�[ni ]R, M] −→ [�[ni ]R, N ] is an
isomorphism for all [ni ] ∈ ZF .

• we say f is a π∗-equivalence if [�n R, M] −→ [�n R, N ] is an isomor-
phism for all n ∈ Z ⊂ ZF .

• we say that f is aπPic-equivalence if [L , M] −→ [L , N ] is an isomorphism
for all objects L ∈ Pic(

∏ω
F ModRi ).

Proposition 3.58 The protoproduct
∏�

F ModRi is generated by
(�[ni ]R)[ni ]∈∏

FZ and is the colocalization of
∏ω

F ModRi with respect to

the π[∗]-equivalences. The bounded protoproduct
∏��

F ModRi is generated by
(�n R)n∈Z and is the colocalization of

∏ω
F ModRi with respect to the π∗-

equivalences. The Pic-generated protoproduct
∏Pic

F ModRi is generated by
L ∈ Pic(

∏ω
F ModRi ) and is the colocalization of

∏ω
F ModRi with respect to

the πPic-equivalences.

Proof The first part of the claim in each of these sentences implies the sec-
ond part of the claim, because generators detect equivalences. We will show
the claim for the protoproduct, the argument for the bounded protoproduct∏��

F ModRi and Pic-generated protoproduct
∏Pic

F ModRi being similar.

By Lemma 3.37,
∏�

F ModRi is compactly generated by its subcategory of
compact objects, which by construction is colimk

∏
F CellRi ,k ModRi . This∞-category contains �[ni ]R for all [ni ] ∈ ZF , so it suffices to show that

the thick subcategory Thick((�[ni ]R)[ni ]∈∏
FZ) generated by these objects

coincides with colim
∏

F CellRi ,k ModRi . To that end, consider an arbitrary
non-trivial object X ∈ colim

∏
F CellRi ,k ModRi , so that there exists k ≥ 1

with X ∈ ∏
F CellRi ,k ModRi . By construction of the filtrations CellRi this

means that X is a retract of a complex Y built from at most k cells in each
coordinate i ∈ I . Therefore, it is possible to find a cell �[ni ]R and a cofiber
squence

�[ni ]R Y ′ Y,
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such that the compact object Y ′ is contained in
∏

F CellRi ,k−1 ModRi ⊂ Thick((�[ni ]R)[ni ]∈∏
FZ).

An induction on the number k of cells then finishes the proof.

There is another way to describe the Pic-generated protoproduct that is
conceptually useful. We say that a symmetric monoidal compactly generated
stable∞-category C is a Pic-compactly generated∞-category if

LocC(Pic(C)) = C.

That is, the smallest localizing (stable) subcategory of C containing Pic(C)

is all of C. Recall that we assume that the unit is compact in a symmetric
monoidal compactly generated ∞-category, thus Pic(C) ⊂ Cω. Let CatPic∞
be the full subcategory of Cat⊗,ω,st∞ (the ∞-category of stable symmetric
monoidal compactly generated∞-categories) spanned by the Pic-compactly
generated∞-categories. Given∞-categories C and D in Cat⊗,ω,st∞ such that
LocC(Pic(C)) = C, the canonical map LocD(Pic(D))→ D induces an equiv-
alence

MapCat⊗,ω,st∞ (C,LocD(Pic(D)))
�−→ MapCat⊗,ω,st∞ (C,D).

Thus the functor Loc Pic exhibits CatPic∞ as a colocalization of Cat⊗,ω,st∞ .

Corollary 3.59 Let (Ci )i∈I be a collection of objects in CatPic∞ . The Pic-
generated protoproduct of Remark 3.54,

∏Pic

F Ci ,

is the ultraproduct in the ∞-category of Pic-compactly generated ∞-
categories.

Proof The embedding

U : CatPic∞ ↪→ Cat⊗,ω,st∞

admits a right adjoint given by

C �→ LocC(Pic(C)) � Ind ThickC Pic(C),

which preserves filtered colimits.
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Thus for a collection of Pic-compactly generated∞-categories Ci , we have
an equivalence

∏Pic

F Ci � Loc(Pic(
∏ω

FU (Ci ))).

Remark 3.60 Corollary 3.59 applies to the following situation: Let (Ri )i∈I be
a collection of E∞-ring spectra and let F be an ultrafilter on I . It follows that
the Pic-generated protoproduct

∏Pic

F ModRi

is the ultraproduct in the ∞-category of Pic-compactly generated ∞-
categories.

Corollary 3.61 Let (Ri )i∈I be a collection of ring spectra which are peri-
odic of the same period. Then the adjunction of Diagram 3.56 induces an
equivalence

∏�
F ModRi

� ∏��
F ModRi

for any ultrafilter F on I .

Proof As above, let R = [Ri ]. Then this is a consequence of the fact that
�[ni ]R � �k R for some k between 0 and the periodicity. This follows from
the fact that�ni Ri � �ki Ri for ki between 0 and the period. But now since the
ki ’s are bounded, Lemma 2.3 implies that precisely one value can be supported
on the ultrafilter.

The next example highlights the difference between the protoproduct and
the compactly generated ultraproduct.

Example 3.62 Suppose F is a non-principal ultrafilter on I = N. Let R =
Ri = HZ. We will construct two objects in

∏ω
F ModR and a map between

them that is a π[∗]-equivalence but not an equivalence.
The first object is Y = [⊕i

l=0 �l R], which is an object of
∏

F Modω
R ⊂∏ω

F ModR .
The second object will be defined on a filtered diagram. Let A = (Ai )i∈I

be a collection of subsets of N such that Ai ⊂ {1, . . . , i} and maxi |Ai | <∞.
We can define an order on all such collections by defining A ≤ B if ∀i ∈
N, Ai ⊂ Bi . Denote the poset of all such collections by P. It follows from
the definition that this is a directed poset.
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For A ∈ P, define

X (A) = [
⊕

l∈Ai

�l R]i∈I .

This construction extends to a functor

X : P→
∏

F Modω
R,

and, sinceP is directed, this gives us an object in
∏ω

F ModR by passing to the
colimit along X .

There is a canonicalmap f : X → Y in
∏ω

F ModR induced by the canonical
map of compact objects X (A)→ Y . The map f is a π[∗]-equivalence, but not
an equivalence.

To see that it is a π[∗]-equivalence, we must show that

[�[ni ]R, X ] → [�[ni ]R, Y ]

is an isomorphism for all [ni ] ∈ ZF . But

[�[ni ]R, X ] ∼= colim
A∈P [�

[ni ]R, X (A)]

and this is isomorphic to [�[ni ]R, Y ] because �[ni ]R has one cell.
To see that it is not an equivalence, note that Y is compact, so an inverse

X → Y to f would need to factor through a finite stage. Thus Y would be
a retract of X (A) for some A ∈ P, but this is impossible as can be seen by
applying π[i]i∈N .

Now we prove the main result of this subsection.

Theorem 3.63 Let (Ri )i∈I be a collection of E1-ring spectra. Let F be an
ultrafilter on I . Then there is a canonical equivalence

∏��

F ModRi � Mod∏
F Ri ,

where
∏

F Ri denotes the ultraproduct of the spectra (Ri)i∈I in the∞-category
Sp. In addition, if the ring spectra Ri are E∞-rings, then the equivalence is
an equivalence of symmetric monoidal∞-categories.

Proof In order to identify the symmetric monoidal structures in the case that
the ring spectra are E∞, we will first construct a symmetric monoidal com-
parison functor � : ∏��

F ModRi → Mod∏
F Ri . To this end, note that forming
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ultraproducts induces a functor

∏
F :

∏
F Modω

Ri
Sp,

which factors through Mod∏
F Ri because

∏
F is lax symmetric monoidal.

The universal extension of this functor to
∏ω

F ModRi is unital lax symmetric
monoidal, so upon restriction to

∏��
F ModRi we obtain a unital lax symmetric

monoidal functor

� : ∏��
F ModRi → Mod∏

F Ri

between symmetric monoidal∞-categories.
We now claim that � is in fact symmetric monoidal. Indeed, fix an object

M ∈ ∏��
F ModRi and consider the full subcategory CM of

∏��
F ModRi of all

objects N such that �(M ⊗ N ) � �(M)⊗�(N ) via the given lax structure
on �. Since � is unital, the unit 1 of

∏��
F ModRi belongs to CM . Moreover,

CM is closed under colimits, so CM =∏��
F ModRi as

∏��
F ModRi is compactly

generated by 1 by Proposition 3.58. In other words, as M runs through the
objects of

∏��
F ModRi , we see that � is symmetric monoidal.

Invoking Morita theory (Theorem 3.48), it therefore remains to identify the
spectrum End(1). Since the canonical functor

∏��
F ModRi

∏ω
F ModRi

is symmetric monoidal and fully faithful by Lemma 3.45, it sends 1 to the unit
[Ri ] in ∏ω

F ModRi , and we get an equivalence

End(1) � End∏ω
F ModRi

([Ri ]).

This latter spectrum can be identified as

End∏ω
F ModRi

([Ri ]) � End∏
F Modω

Ri
([Ri ]) �

∏
F EndModRi

(Ri ) �
∏

F Ri

by Lemma 3.28 since [Ri ] is compact.

Remark 3.64 Given a collection of E1-ring spectra Ri and Ri -module homo-
morphisms fi : Mi → Ni , then their ultraproduct

∏
F fi : ∏F Mi

∏
F Ni
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is canonically an
∏

F Ri -module homomorphism. To see this, it suffices to
observe that the ultraproduct is composed of an infinite product and a filtered
colimit in Sp, for which the claim is easily verified.

We end this subsection with three examples and an application to chromatic
homotopy theory.

Example 3.65 Let F be an ultrafilter on the set I . Consider the bounded pro-
toproduct

∏��

F ModHZ .

If F is principal on the set {i}, then this bounded protoproduct is equivalent to
ModHZ. Now assume that F is non-principal. In this case, Proposition 3.58
provides an equivalence

∏��

F ModHZ � ModHZF ,

where ZF is the ring discussed in Example 2.14.

Example 3.66 Let GrAb be the 1-category of graded abelian groups and let F
be an ultrafilter on the set of primes P . Since the Eilenberg–MacLane functor
H : GrAb → Sp preserves products and filtered colimits, there is a natural
equivalence

∏
F (H Mp) � H(

∏
F Mp)

for any collection of abelian groups (Mp)p∈P . In particular, let Rp = HFp[x]
with x of degree 2.Because of the grading, the ultraproduct of the Rp’s recovers
the Eilenberg–MacLane spectrum of a graded version of the protoproduct of
Example 2.16.

Example 3.67 Let F be a non-principal ultrafilter on P and let Sp(p) be the
∞-category of p-local spectra. Then there is a natural equivalence

∏��

F Sp(p) � ModHZ(F)
,

where Z(F) is the Q-algebra
∏

FZ(p) (similar to Example 2.12). It follows
from Proposition 3.58 that

∏��

F Sp(p) � Mod∏
F S0

(p)
,
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and it remains to give a more explicit description of
∏

F S0
(p). Since the homo-

topy groups of S0
(p) are zero in degrees [1, 2p− 4], we obtain an equivalence

∏
F S0

(p) �
∏

F HZ(p) � HZ(F).

Finally, we apply several of the ideas of this subsection to the case that we
fix a prime p and consider the protoproduct of the categories of modules of
K (n) at an ultrafilter on the natural numbers.

Theorem 3.68 Let F be a non-principal ultrafilter on the natural numbers N,
let P K (n) be 2-periodic Morava K -theory of height n at the prime p, and let
P HFp be 2-periodic singular cohomology with coefficients in Fp. There is a
natural equivalence

∏�
F ModP K (n)

� ModP HFp

of compactly generated stable∞-categories.

Proof Because all theories involved are 2-periodic, Corollary 3.61 and Theo-
rem 3.63 give an equivalence

∏�

F ModP K (n) � Mod∏
F P K (n) .

We will produce an equivalence of ring spectra

∏
F P K (n) � P HFp.

Note that there is a map of E1-algebras

K (n)→ P K (n)

inducing a map of E1-algebras

∏
F K (n)→

∏
F P K (n).

As the periodicity of π∗K (n) strictly increases as the height n increases, we
see that

π∗(
∏

F K (n))
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is concentrated in degree 0 and π0(
∏

F K (n)) ∼= Fp, thus

∏
F K (n) � HFp.

Recall that a ring spectrum R ∈ Sp is called a field object if π∗R is a graded
field in the algebraic sense. As a result of the nilpotence theorem, Hopkins
and Smith [32] have classified the minimal field objects in Sp: They are the
Eilenberg–MacLane spectra HFp as well as the Morava K -theories K (n) for
all n and p.

Since ultraproducts commute with homotopy groups, it follows that∏
F P K (n) ∈ Sp is a field object. Since it is an HFp-algebra and

π2i
∏

F P K (n) ∼= Fp, there is an equivalence of ring spectra

∏
F P K (n) � P HFp.

Remark 3.69 We would like to point out one curious consequence of this
result: In the course of the proof we produced equivalences of ring spectra
of the form

∏
F P K (n) � P HFp and

∏
F K (n) � HFp. However, P K (n)

and K (n) are not E2 for any n > 0 or p. We might therefore interpret this as
saying that P K (n) and K (n) become more commutative as n →∞, without
moving through the usual hierarchy of Em-operads.

4 Formality

Let GrAb be the symmetric monoidal category of Z-graded abelian groups
with grading preserving maps. The functor

π∗ : Sp→ GrAb

admits a right inverse

H : GrAb→ Sp,

which commutes with products, called the generalized Eilenberg–MacLane
spectrum functor. Note that H is lax symmetric monoidal. As a lax functor H
induces a functor from CAlg(GrAb) to CAlg(Sp) which we will still denote
by H . For any∞-category D an object in CAlg(Sp)D is called formal if it is
in the image of

H D : CAlg(GrAb)D → CAlg(Sp)D.
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Let En,p be a Morava E-theory at height n and the prime p. Let E⊗•+1n,p

be the Amitsur complex of the unit map S0 → En,p, defined carefully in
Sect. 4.2. The goal of this section is to prove that the cosimplicial spectrum

∏
F

(
E⊗•+1n,p

) ∈ CAlg(Sp)�.

is formal. This is the first step in showing that the distinction between spectral
and algebraic data disappears at a non-principal ultrafilter.

To explain the idea of the proof first consider the formality of

En,F =
∏

F
(
En,p

)
.

The E∞-ring En,p admits an action of C p−1 such that the induced action on
π2 j En,p is of weight j . Decomposing En,p according to weights, we deduce
that any non-trivial k-invariant of En,p can only appear in degrees divisible by
2(p − 1). As the prime p goes to infinity the non-trivial k-invariants appear
sparser and sparser and in the limit they do not appear at all.

To apply this idea to
∏

F E⊗•+1n,p , two issues need to be addressed:

(1) For k ≥ 2, the C p−1 action on E⊗k
n,p is not of a single weight for every

homotopy group.
(2) The formality needed in the cosimplicial case needs to include not only the

formality at every cosimplicial degree but also all of the coherence data in
the diagram as well as the algebra structure.

It turns out that the first issue disappears after replacing theAmitsur complex
of the unit map S0 → En,p by that of the map Ŝ → En,p, where Ŝ is the p-
complete sphere.

To aid the reader we provide a brief outline of this section. Sects. 4.1–4.3
give a reduction to theAmitsur complex of Ŝ → En,p. In Sect. 4.1we establish
basic general properties of the functor H .We use the arithmetic fracture square
in Sect. 4.2 to reduce the formality of

∏
F E⊗•+1n,p to the formality of a diagram

built out of the rationalization of En,p and
∏

F E
⊗Ŝ•+1
n,p . The required results

regarding Q⊗ En,p are proved in Sect. 4.3 using Andre–Quillen obstruction

theory. We are now left with the need to prove the formality of
∏

F E
⊗Ŝ•+1
n,p

while taking issue (2) into account.

In Sect. 4.4 we prove that the action of C p−1 on
∏

F E
⊗Ŝ•+1
n,p has the desired

properties. In Sect. 4.5 we introduce operadic tools that allow us to explore the
interplay between symmetric monoidal structures and weight decompositions.
We employ these tools in Sect. 4.6 to produce the weight decomposition of
∏

F E
⊗Ŝ•+1
n,p . Finally, in Sect. 4.7 we collect all of the results at each finite

prime to obtain the formality at the non-principal ultrafilters.
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4.1 Properties of H

In this subsection we establish basic properties of the functor H : GrAb→ Sp
that will help us deduce the formality of the cosimplicial spectrum

∏
F

(
E⊗•+1n,p

) ∈ CAlg(Sp)�.

The following proposition follows from the analogous fact for π∗.

Proposition 4.1 The functor H commutes with products and filtered colimits
and therefore with ultraproducts.

Definition 4.2 Let X be a spectrum. Define

X� = Hπ∗(X).

Since H and π∗ are lax symmetric monoidal functors, if R is an En-ring
spectrum, then R� is an En-ring spectrum (n = ∞ is allowed). In fact, since
GrAb is a 1-category, if n ≥ 2, then R� automatically has the structure of an
E∞-ring spectrum.

These ring spectra behave in an algebraic way, as can be seen in the follow-
ing theorem of Schwede and Shipley ( [53], [36, Section 7.1.2]). For a ring
spectrum R, let C(R) be the differential graded algebra in which the chain
groups are precisely the homotopy groups of R and the differentials are all the
zero map.

Theorem 4.3 (Schwede–Shipley) LetD(Ab) be the∞-category of chain com-
plexes of abelian groups and let R be an E∞-ring spectrum. There is a
symmetric monoidal equivalence of stable∞-categories

ModR� � ModC(R)(D(Ab)).

Thus we may think about R� as a differential graded algebra.

Proposition 4.4 Let D be a small category and let

P B

A C

be a pullback diagram in CAlg(GrAbD). If for every object d ∈ D, the map
B(d)⊕ A(d)→ C(d) is surjective, then

H D(P)→ H D(B)×H D(C) H D(A)

123



Chromatic homotopy is asymptotically algebraic 789

is an equivalence inCAlg(SpD) and thus the pullback H D(B)×H D(C) H D(A)

is formal.

Proof Consider the long exact sequence of homotopy groups for the pullback
H D(B)×H D(C) H D(A). The surjectivity of the map

B(d)⊕ A(d)→ C(d)

implies that the homotopy groups of the pullback are exactly the pullback of the
homotopygroups.Thus the canonicalmap H D(P)→ H D(B)×H D(C)H D(A)

is an equivalence.

Corollary 4.5 Let D be a small category and let

P B

A C

be a pullback diagram in CAlg(Sp)D. Assume that (A → C) and (B → C)

are formal as objects in CAlg(Sp)D×�1
and that for every d ∈ D and i ∈ Z

the map

πi (A(d))⊕ πi (B(d)) → πi (C(d))

is surjective, then P is formal as an object in CAlg(Sp)D.

Lemma 4.6 Let D be a small category and let R ∈ CAlg(Sp)D be formal.
Let

(
R → Q⊗ R

) ∈ CAlg(Sp)D×�1

be the canonical map to the rationalization. Then R → Q ⊗ R is formal as
an object in CAlg(Sp)D×�1

.

Proof By assumption R � H Dπ D∗ (R). We also have an object

(π D∗ (R)→ π D∗ (R)⊗Q) ∈ CAlg(GrAb)D×�1
.

By the laxness of H D there is a commutative square

H Dπ D∗ (R) H Dπ D∗ (R)⊗ H DQ

H Dπ D∗ (R) H D(π D∗ (R)⊗Q),
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where the right vertical map is an equivalence by the flatness of Q over π∗(S0)

and H DQ is just H D applied to the constant diagram. Thus the fact that the
bottom horizontal map is formal implies that the top horizontal map is formal.

Let SpQ[0, 0] be the full symmetricmonoidal subcategory of SpQ on objects
whose nontrivial homotopy groups are concentrated in degree 0. Also, let
GrAbQ be the category of graded Q-vector spaces and let Q − Mod be the
symmetric monoidal category of rational vector spaces viewed as a full sub-
category of GrAb on degree 0 objects.

Lemma 4.7 The restriction of the lax symmetric monoidal functor

H D : GrAbD → SpD

to

H D
Q : GrAbD

Q → SpD
Q

is symmetric monoidal. Restricting further to Q−ModD induces a symmetric
monoidal equivalence

H D|Q−ModD : Q−ModD �−→ SpQ[0, 0]D.

Proof Both statements reduce to the case D = ∗. The first statement fol-
lows from the fact that every Q-module is flat by using the Künneth spectral
sequence. The equivalence

Q−Mod
�−→ SpQ[0, 0]

is classical.

4.2 The reduction to the rational and p-complete cases

Let Ŝ be the p-complete sphere spectrum and fix a non-principal ultrafilter F
on I = P . In this subsection we use the arithmetic fracture square to reduce
the verification of the formality of the cosimplicial spectrum

∏
F E⊗•+1n,p

to the formality of the cosimplicial spectrum

∏
F E

⊗Ŝ•+1
n,p
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and the formality of the canonical map of cosimplicial spectra

∏
FQ⊗ E⊗•+1n,p →

∏
FQ⊗ E

⊗Ŝ•+1
n,p .

Remark 4.8 The ultraproducts in this section are being taken in a variety of
different categories. But all of these categories are either diagram categories
or categories of commutative algebra objects in diagram categories. Since
ultraproducts commute with the forgetful functor and restriction of diagrams,
there should be no ambiguity regarding what is meant by the symbol

∏
F .

Given a spectrum M and a map of spectra f : A → B, we say that f is an
M-equivalence if f ⊗M is an equivalence of spectra. Note that if f and g are
M-equivalences, then f ⊗ g is an M-equivalence.

Lemma 4.9 Let M be a spectrum and let f : R → S be a map of E1-spectra
which is an M-equivalence. Let A and B be right and left S-modules. The
map

A ⊗R B → A ⊗S B

is an M-equivalence.

Proof Recalling the definition of the relative tensor product as a geometric
realization (bar construction) and using the fact that⊗ commutes with colimits
in each variable, it is enough to show that for every k ≥ 0 the map

A ⊗ R⊗k ⊗ B → A ⊗ S⊗k ⊗ B

is an M-equivalence. This follows from the fact that the tensor product of
M-equivalences is an M-equivalence.

Corollary 4.10 For every k ≥ 1, the map

E⊗k
n,p → E

⊗Ŝk
n,p

is an equivalence after p-completion

Proof Recall that p-completion is localization with respect to theMoore spec-
trum M(p). The map S0 → Ŝ is an M(p)-equivalence so the result follows
from the previous lemma.

Let C be a presentably symmetric monoidal ∞-category and let A → B
be a map in CAlg(C). In this situation, B may be considered as an object in
CAlgA(C). Evaluating at the object [0] ∈ � gives a functor

CAlgA(C)� → CAlgA(C)
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This functor admits a left adjoint

L : CAlgA(C)→ CAlgA(C)�

such that L(B)([n]) � B⊗A(n+1). We call L(B) the Amitsur complex of B
over A, the cosimplicial object

B B ⊗A B B ⊗A B ⊗A B · · · .

By abuse of notation we give the same name to the image of L(B) under the
forgetful functor

CAlgA(C)� → CAlg(C)�.

We denote this image by B⊗A•+1.

Lemma 4.11 There is a pullback square in CAlg(Sp)�

E⊗•+1n,p E
⊗Ŝ•+1
n,p

Q⊗ E⊗•+1n,p Q⊗ E
⊗Ŝ•+1
n,p .

Proof Consider the diagram of cosimplicial spectra

E⊗•+1n,p E
⊗Ŝ•+1
n,p

(
E⊗•+1n,p

)∧
p

Q⊗ E⊗•+1n,p Q⊗ E
⊗Ŝ•+1
n,p Q⊗

(
E⊗•+1n,p

)∧
p
.

At cosimplicial degree k, the outer square is the arithmetic fracture square
associated to E⊗k+1, thus it is a pullback square. We show that the right-hand
square is a pullback square. By Corollary 4.10 at cosimplicial degree k it is the
fracture square attached to E⊗Ŝk+1. The claim now follows from the pasting
lemma.
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Corollary 4.12 There is a pullback square in CAlg(Sp)�

∏
F E⊗•+1n,p

∏
F E

⊗Ŝ•+1
n,p

∏
FQ⊗ E⊗•+1n,p

∏
FQ⊗ E

⊗Ŝ•+1
n,p .

Proof This follows fromLemma 4.11 plus the fact that ultraproducts commute
with finite limits in Sp.

The next two theorems follow from the main results of Sects. 4.3 and 4.7.

Theorem 4.13 The canonical diagram in CAlg(Sp)�×�1

∏
FQ⊗ E⊗•+1n,p →

∏
FQ⊗ E

⊗Ŝ•+1
n,p

is formal.

Proof We prove in Corollary 4.25 that this is true at every finite prime p.
Therefore, we are done as Proposition 4.1 implies that the functor H commutes
with ultraproducts.

Theorem 4.14 The cosimplicial E∞-ring

∏
F E

⊗Ŝ•+1
n,p

is formal.

Proof This is Theorem 4.47.

Lemma 4.15 The canonical diagram in CAlg(Sp)�×�1

∏
F E

⊗Ŝ•+1
n,p →

∏
FQ⊗ E

⊗Ŝ•+1
n,p

is formal.

Proof This follows from Theorem 4.14 by Lemma 4.6.

Lemma 4.16 For every k ≥ 1, π∗(E⊗k
n,p) is torsion-free.

Proof It follows inductively from [34, Proposition 2.16] that π∗(E⊗k
n,p) is flat

over π∗(En,p). On the other hand, π∗(En,p) is flat as a Zp-module. Thus
π∗(E⊗k

n,p) is flat as a Zp-module and therefore torsion-free.

123



794 T. Barthel et al.

Lemma 4.17 Let f : A → B be a map of abelian groups that induces a
surjection on the quotient A/n A → B/nB for every n ∈ N. Then the map

B ⊕Q⊗ A → Q⊗ B

is surjective.

Proof Let 1
n ⊗ b ∈ Q ⊗ B. Since A/n A → B/nB is surjective, we have

some a ∈ A, b0 ∈ B such that b = f (a) + nb0. It follows that 1
n ⊗ b =

1
n ⊗ f (a)+ 1⊗ b0.

Lemma 4.18 Let A → B be a map of p-local spectra that is an equivalence
after p-completion and assume that πi (A) is torsion-free for all i ∈ Z. Then
the map

πi (B ⊕Q⊗ A)→ πi (Q⊗ B).

is surjective.

Proof Let S0/pm be theMoore spectrum. Themap A⊗S0/pm → B⊗S0/pm

is an equivalence for m = 1 by the definition of p-completion and for higher
m by induction using cofiber sequences. Consider the following diagram:

A
×pm

A A ⊗ S0/pm

�

B
×pm

B B ⊗ S0/pm .

In this diagram the two rows are cofiber sequences. Taking the corresponding
map of long exact sequences in homotopy groups and keeping in mind πi (A)

is torsion-free, we get the following diagram in which both rows are exact:

0 πi (A)/pmπi (A)
∼=

πi (A ⊗ S0/pm)

∼=

0

0 πi (B)/pmπi (B) πi (B ⊗ S0/pm) πi (B)[pm] 0.

We thus conclude that πi (B) is torsion-free and that πi (A)/pmπi (A) →
πi (B)/pmπi (B) is an isomorphism. Since A and B are p-local, we get that
πi (A)/nπi (A)→ πi (B)/nπi (B) is an isomorphism for every n ∈ N. Lemma
4.17 gives the conclusion.
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Proposition 4.19 For each k, i , and n, the canonical map

πi (
∏

F E
⊗Ŝk
n,p ⊕

∏
FQ⊗ E⊗k

n,p)→ πi (
∏

FQ⊗ E
⊗Ŝk
n,p )

is surjective.

Proof Since ultraproducts commute with homotopy groups and preserve sur-
jections it is enough to show that for each k, i , p, and n, the canonical map

πi (E
⊗Ŝk
n,p ⊕Q⊗ E⊗k

n,p)→ πi (Q⊗ E
⊗Ŝk
n,p )

is surjective. This follows from Corollary 4.10, Lemmas 4.16 and 4.18.

The main result of this section is the following theorem.

Theorem 4.20 The object
∏

F E⊗•+1n,p in CAlg(Sp)� is formal. That is, there
is an equivalence of cosimplicial E∞-rings

∏
F E⊗•+1n,p �

∏
F (E⊗•+1n,p )�.

Proof Apply Corollary 4.5 to the pullback diagram in Corollary 4.12. The
pullback diagram satisfies the condition of Corollary 4.5 by Theorem 4.13,
Lemma 4.15, and Proposition 4.19.

4.3 Rational formality

The purpose of this subsection is to prove Theorem 4.13. The proof is an
application of obstruction theory to commutative differential graded algebras
over a characteristic 0 field k.

Lemma 4.21 Let EQ = Q⊗ En,p be the rationalisation of Morava E-theory.
Then there exists an E∞-ring map f p : Hπ0(EQ)→ EQ inducing an isomor-
phism on π0.

Proof. The existence of the map f p follows from the construction of En,p that
appears in [39]. Specifically, given a perfect field k of characteristic p and G0 a
height n formal group law over k, let En,p be the Morava E-theory associated
toG0. In [39, Theorem3.0.11 andRemark 3.0.14] Lurie constructs anE∞-ring
Run

G0
with π0(Run

G0
) canonically identified with the Lubin–Tate ring π0(En,p).

Then, given the same data, in Sect. 6 of [39] Lurie constructs another E∞-ring
Ror

G0
together with an E∞-ring map

Run
G0
→ Ror

G0
,
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see in particular [39, Construction 6.0.1 and Remark 6.0.2]. We can now iden-
tify the required map f p as

Hπ0(EQ) ∼= Q⊗ Run
G0
→ Q⊗ Ror

G0
∼= EQ

due to the following facts:

(1) The map Run
G0
→ Ror

G0
induces an isomorphism on π0, by [39, Theorem

6.0.3].
(2) The E∞-ring Ror

G0
can be identified with En,p, by [39, Theorem 5.1.5 and

Remark 6.4.8].
(3) TheE∞-ringQ⊗ Run

G0
is concentrated in degree 0, by [39, Theorem 6.3.1].

Remark 4.22 For a fixed height n, we only need the existence of themap f p for
large enough p. Using this observation, it is possible to replace the argument of
Lemma 4.21 by an obstruction theoretic one. Indeed, in Sect. 4.4 we construct
a C p−1 action on En,p such that the E∞-ring map

E
hC p−1
n,p → En,p

induces an isomorphism on homotopy groups in degrees dividing 2(p − 1)

and such that πi (E
hC p−1
n,p ) is zero in all other degrees, see Remark 4.27. Let B

be the connective cover of (E
hC p−1
n,p )Q. Then it is enough to show that there is

an E∞-ring map

Hπ0(B)→ B

inducing an isomorphism on π0. This problem is amenable to standard tech-
niques in obstruction theory; for an∞-categorical treatment, see [36, Section
7.4.1]. Specifically, applying [36, Remark 7.4.1.29] to ModHQp instead of Sp,
using the E∞-operad, and setting A = Hπ0(B), we get that the obstructions
to the existence (ε = 1) and uniqueness (ε = 0) of the required map lie in

Oε
d = Extd+ε

π0(B)(Lπ0(B)/Qp , πd(B)).

Since π0(B) is regular, Lπ0(B)/Qp is concentrated in degree zero (see, for
example, [35] Proposition 5.9 and Theorem 9.5) and thus as π0(B) is regular
of Krull dimension n−1 the groups Oε

d are all zero if p > n+1
2 and ε ∈ {0, 1}.

Lemma 4.23 Let R be a commutative algebra in ModHk and assume that
there exists a map Hπ0(R) → R which induces an isomorphism on π0 and
that π∗(R) ∼= π0(R)[β±1] for some β ∈ π2(R). Then R is formal as an
Hk-algebra.
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Proof We have map Hπ0(R)→ R that is an isomorphism on π0. Now β± ∈
π±2(R) corresponds to maps Hk±2 → R. By the free-forgetful adjunction
between ModHk and ModHπ0(R), we get maps of Hπ0(R)-modules

α± : �±2Hπ0(R)→ R.

By the free-forgetful adjunction between algebras and modules, we get two
Hπ0(R)-algebra maps

γ± : Hπ0(R)[β±] → R.

The map γ+ (resp. γ−) is an isomorphism on positive (resp. negative) homo-
topy groups.

The following diagram is a pushout diagram (as can be seen by applying
π∗):

Hπ0(R)[β ⊗ β−1] Hπ0(R)

Hπ0(R)[β] ⊗Hπ0(R) Hπ0(R)[β−1] R,

where Hπ0(R)[β⊗β−1] is H applied to the polynomial algebra overπ0(R) on
a (formal) generatorβ⊗β−1 in degree zero. The left verticalmap sendsβ⊗β−1
to the element with the same name. Since Hπ0(R)[β]⊗Hπ0(R) Hπ0(R)[β−1]
is flat over Hπ0(R)[β ⊗ β−1] and Hπ0(R)[β] and Hπ0(R)[β−1] are formal,
we deduce the formality of R.

Let E = En,p and let EQ = Q⊗ En,p.

Corollary 4.24 The diagram

HQ → HQp → EQ

is formal as an object in CAlg(Sp)�
2
. It is the image of Q → Qp → π∗(EQ)

under H�2
.

Proof Since π0(EQ) is a formally smooth Qp-algebra, Lemma 4.23 and
Lemma 4.21 implies that the map HQp → EQ is formal. The result now
follows as the canonical map HQ → HQp is formal.

Given maps of E∞-algebras A → B → C , taking the Amitsur complexes
of C over A and over B we get a map of cosimplicial E∞-rings

C⊗A•+1 → C⊗B•+1.
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Thus the maps of E∞-rings

HQ → HQp → EQ

gives rise to an object in the∞-category of maps of cosimplicial E∞-rings

(E
⊗HQ•+1
Q

→ E
⊗HQp•+1
Q

) ∈ CAlg(Sp)�×�1
.

Corollary 4.25 The object

(E
⊗HQ•+1
Q

→ E
⊗HQp•+1
Q

) ∈ CAlg(Sp)�×�1

is formal.

Proof By Corollary 4.24, there are equivalences

(Hπ∗(EQ))⊗HQk � E
⊗HQk
Q

and (Hπ∗(EQ))
⊗HQp k � E

⊗HQp k

Q

for all k.
Now the laxness of H� gives us a natural map in CAlg(Sp)�×�1

H�
(
π∗(EQ)⊗Q•+1) H�

(
π∗(EQ)

⊗Qp•+1
)

E
⊗HQ•+1
Q

E
⊗HQp•+1
Q

.

The vertical arrows give an equivalence in CAlg(Sp)�×�1
by the flatness of

π∗(EQ) over Qp and Q.

4.4 The Cp−1-action on E-theory

The Morava stabilizer group acts on En,p through E∞-ring maps. This gives
rise to a C p−1-action by restriction. In this subsection, we study the effect of
this action on the coefficients of En,p and its tensor powers.

It follows from [19], that the stabilizer group S (which depends on n and
p) acts on E = En,p through E∞-ring maps. Recall that S = Aut(G), where
G is a height n formal group law over k, a perfect field of characteristic p.
The natural action of Z on G by left multiplication extends to an action of the
p-adic integers Zp. Thus the units in Zp act by automorphisms. This implies
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that S contains a distinguished subgroup C p−1 ⊂ Z×p ⊂ S. This inclusion is a
distinguished element in hom(C p−1, Z×p ) that we use to fix the isomorphism

Z/(p − 1) ∼= hom(C p−1, Z×p )

sending 1 to this element.

Proposition 4.26 The action of i ∈ C p−1 ⊂ Z×p on E∗ ∼= E0[u, u−1] is given
by sending

u �→ iu.

Proof This follows from [17, Proposition 3.3, Theorem 4.4] and is also
described in [50, proof of 5.4.9]. See also [24, Appendix].

Remark 4.27 Since p−1 is prime to p, the homotopy groups of the homotopy
fixed points EhC p−1 may be computed by taking the fixed points for the action
of C p−1 on π∗E . There is an isomorphism

π∗(EhC p−1) ∼= E0[u±(p−1)].

Since C p−1 acts on E and the map S0 → E is C p−1-equivariant (with
the trivial action of C p−1 on S0), there is an action of C p−1 on the Amitsur
complex of the map S0 → E . On each degree of the Amitsur complex C p−1
acts diagonally. The action of C p−1 on π0(E⊗k) is not trivial for k > 1, thus
the formula of Proposition 4.26 does not extend to E⊗k when k > 1. However,
this can be corrected by working over the p-complete sphere spectrum Ŝ = S0

p

(working with the Amitsur complex of Ŝ → E). Note that the action of C p−1
on E⊗k described above induces an action on E⊗Ŝk . Our initial goal is to prove
that the action of C p−1 on π0(E⊗Ŝk) is trivial. This will follow from the next
two lemmas.

Lemma 4.28 Let A be a spectrum such that π∗(A) is torsion-free. There is a
canonical isomorphism

π∗(A∧p)
∼=−→ (π∗(A))∧p .

Proof The proof is similar to the proof of Lemma 4.18. By [11], there is an
equivalence

A∧p � lim(A ⊗ S0/pk),
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where S0/pk is the mod p Moore spectrum. It suffices to show that

π∗(A ⊗ S0/pk) ∼= (π∗A)/pk .

These homotopy groups sit in a short exact sequence

πn(A)/pk → πn(A ⊗ S0/pk)→ πn−1(A)[pk].

Since π∗(A) is torsion-free, we have an isomorphism

πn(A)/pk ∼=−→ πn(A ⊗ S0/pk).

Lemma 4.29 The action of C p−1 on π0((E⊗k)∧p) is trivial.

Proof Fix a coordinate on GE , the formal group associated to E , and let
s, t : π0E → π0(E ⊗ E) be the two canonical maps. Recall from [28] that
π0(E⊗2) carries the universal isomorphism of formal group laws

s∗GE
∼= t∗GE .

That is, π0(E ⊗ E) corepresents the functor on commutative rings sending a
ring R to the set of isomorphisms between the two formal group laws over R
determined by the two induced maps from π0E to R.

Since E is p-complete, a ∈ Zp determines an endomorphism [a] of GE
(GE is a formal Zp-module). The action of a ∈ C p−1 ⊂ Zp on π0(E ⊗ E) is
given by conjugating the universal isomorphism by the pullback of [a] along
s and t .

Since π∗(E⊗k) is flat over π∗E and π∗E is torsion-free, it follows that
π∗(E⊗k) is torsion-free. Lemma 4.28 implies that

π0((E⊗k)∧p) ∼= π0(E⊗k)∧p .

Thus, when we restrict the functor determined by π0(E ⊗ E) to p-
complete rings, the resulting functor is corepresented by π0((E⊗ E)∧p). Since
π0((E⊗E)∧p) is p-complete, it carries the universal isomorphismof formalZp-
modules s∗GE

∼= t∗GE . Since this is an isomorphism of formal Zp-modules,
the conjugation action is trivial.

We generalize this to the kth tensor power π0(E⊗k). We have a C p−1-
equivariant equivalence

(E ⊗ E)⊗E k−1 � E⊗k,
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which, by flatness, induces an isomorphism

π0(E ⊗ E)⊗π0E k−1 ∼= π0(E⊗k).

Thusπ0(E⊗k) carries the universal (k−1)-tuple of composable isomorphisms
between the k-formal group laws determined by the k canonical maps from
π0E to π0(E⊗k). Since C p−1 acts trivially on π0E , the action of C p−1 on
π0(E⊗k) is given by conjugating the string of k−1 composable isomorphisms.
It follows from the k = 2 case that this action is trivial over the p-completion.

Proposition 4.30 The action of C p−1 on π0(E⊗Ŝk) is trivial.

Proof By Corollary 4.10, the arithmetic square for E⊗Ŝk takes the form

E⊗Ŝk (E⊗k)∧p

(Q⊗ E)
⊗

Q⊗Ŝk
Q⊗ (E⊗k)∧p .

By even periodicity, we have an injection

π0(E⊗Ŝk) ↪→ π0((Q⊗ E)
⊗

Q⊗Ŝ k
)⊕ π0(E⊗k)∧p .

It suffices to show that the C p−1-action on the codomain is trivial. The action
on the right hand side is trivial by Lemma 4.29. Since Q⊗ Ŝ � HQp, Q⊗ E
is flat over Q⊗ Ŝ. Thus we have an isomorphism

π∗((Q⊗ E)
⊗

Q⊗Ŝ k
) ∼= (π∗(Q⊗ E))

⊗Qp k
.

Since C p−1 acts on π∗(Q⊗ E) according to Proposition 4.26, direct compu-

tation shows that the action of C p−1 on π0((Q⊗ E)
⊗

Q⊗Ŝ k
) is trivial for degree

reasons.

Corollary 4.31 The action of i ∈ C p−1 on π2l(E⊗Ŝk) is given by multiplica-
tion by il .

Proof In the∞-category of naive C p−1-equivariant E-module spectra, there
is a canonical equivalence

E⊗Ŝk ⊗E �−2l E
�−→ �−2l E⊗Ŝk .
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This gives rise to a C p−1-equivariant isomorphism

π0(E⊗Ŝk)⊗π0E π2l E
∼=−→ π2l(E⊗Ŝk),

where C p−1 acts trivially on π0 by Proposition 4.30 and by i l on π2l by
Proposition 4.26.

Remark 4.32 There are isomorphisms

πl((E⊗Ŝk)hC p−1) ∼=
{

πl(E⊗Ŝk) if 2(p − 1)|l,
0 otherwise

and the map of E∞-ring spectra (E⊗Ŝk)hC p−1 → E⊗Ŝk is an isomorphism
after applying π∗ when ∗ = 2(p − 1)l.

4.5 Symmetric monoidal categories from abelian groups

The C p−1-action constructed in the previous subsection shows that the non-
trivial k-invariants of E⊗Ŝ l grow sparser as p grows larger. This is the essential
fact that we use to show formality. However, sincewe are interested in showing
the formality of E⊗Ŝ•+1 as a cosimplicial E∞-ring, we need to analyze the
C p−1-action in a way that respects both the cosimplicial andE∞-ring structure
simultaneously. The tools to do this are developed in the next three subsec-
tions. In this subsection, we set up the general machinery to encode both the
weight decomposition and the E∞-ring structure on an object in a symmetric
monoidal∞-category.

Let A be an abelian group. It may be considered as a symmetric monoidal
∞-category A⊗ whose underlying category is the discrete category which is
A as a set. This point of view is functorial, a homomorphism of abelian groups
A → B gives rise to a symmetric monoidal functor of symmetric monoidal
∞-categories A⊗ → B⊗. Recall that the∞-category of symmetric monoidal
∞-categories and lax symmetric monoidal functors is a full subcategory of
the∞-category of∞-operads. Thus A⊗ may be viewed as an∞-operad. For
example if 0 is the group with one element we have 0⊗ = E∞.

Recall from [36, Section 2.1] that an∞-operadO⊗ may be thought of as a
multicategory. It is possible to add an additional object ∗ toO, the underlying
∞-category of O⊗, which is “multifinal”. That is all multimapping spaces
with target ∗ are contractible. We carefully define this contruction in the case
O⊗ = A⊗:

Proposition 4.33 Let A be an abelian group. There is a symmetric monoidal
∞-category A⊗|� under E∞ built out of A⊗ by adding a multifinal object. It
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is equipped with an inclusion

A⊗ ↪→ A⊗|�

and the construction is natural in maps of abelian groups.

Proof For an abelian groups A, the ∞-operad A⊗|� can be described very
explicitly. Indeed, given a pointed set X ∈ Set∗, let X◦ be the set obtained by
removing the special point (note that this is not functorial). An object in A⊗|� is
a finite pointed set X ∈ N (F in∗) togetherwith amapa : X◦ → A

∐{∗} ∈ Set.
While a morphism in A⊗|� from a : X◦ → A

∐{∗} to b : Y ◦ → A
∐{∗} is

a map f : X → Y in N (F in∗) such that for all y ∈ Y such that b(y) /∈ {∗}
we have that a( f −1(y)) ⊂ A and

∑
a( f −1(y)) = b(y). This gives A⊗|� the

structure of a symmetric monoidal ∞-category with respect to the obvious
map to Fin∗.

The inclusion A⊗ ↪→ A⊗|� is induced by themap postcomposing a : X◦ →
A with the canonical inclusion A ↪→ A

∐{∗}.
Let A� be the underlying∞-category of A⊗|�.
Now let C be a presentably symmetric monoidal∞-category and let A be an

abelian group. Restriction along the inclusion A⊗ ↪→ A⊗|� produces a map

θA : AlgA⊗|�(C)→ AlgA⊗(C).

Lemma 4.34 Let F ∈ AlgA⊗(C), let F ′ ∈ AlgA⊗|�(C), and let f : F →
θA(F ′) be a map. Then f exhibits F ′ as a free A⊗|�-algebra generated by F
if and only if

(1) For every a ∈ A the map f (a) : F(a) → θA(F ′)(a) is an equivalence in
C.

(2) The underlying functor

F ′ : A� → C

is a colimit diagram.

Proof We have attempted to use the notation of [36, Definition 3.1.3.1]. In
[36, Definition 3.1.3.1], for an object x ∈ A�, Lurie defines

(
A⊗act

)
/x = A⊗ ×A⊗|�

(
A⊗|�act

)

/x
.

Note that
(

A⊗act
)
/a is in fact the overcategory

(
A⊗act

)
/a for a an object in A ⊂

A⊗act. We define

ca : �0 →
(

A⊗act
)
/a
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to be the functor that chooses the cone point. Also let

c∗ : A → (
A⊗act

)
/∗

be the functor induced by the two obvious functors

A → A⊗

and

A → A� → A�
/∗ →

(
A⊗|�act

)

/∗ .

Both ca and c∗ are cofinal. This is clear for ca . The cofinality of c∗ is a
straightforward computation since

(
A⊗act

)
/∗ � A⊗act �

∐

a∈A

(
A⊗act

)
/a .

ByDefinition 3.1.3.1 of [36], f exhibits F ′ as a free A⊗|�-algebra generated
by F if and only if for every object x ∈ A�, the map

ᾱx :
( (

A⊗act
)
/x

)� → C⊗

is an operadic colimit diagram. Since C is a presentably symmetric monoidal
∞-category, [36, Proposition 3.1.1.15] and [36, Proposition 3.1.1.16] prove
that this is equivalent to the following condition: For every object x ∈ A� the
map

β̄x :
( (

A⊗act
)
/x

)� → C

is a colimit diagram. Here β̄x is a certain functor built out of ᾱx .
By the cofinality of ca and c∗, β̄x is a colimit diagram for every x ∈ A� if

and only if β̄a ◦ c�
a and β̄∗ ◦ c�∗ are colimit diagrams. These two conditions

are conditions (1) and (2) in the statement of the lemma.

Now since C is presentably symmetric monoidal, [36, Corollary 3.1.3.5]
implies that θA has a left adjoint (the free algebra functor) that we shall denote
by

L A : AlgA⊗(C)→ AlgA⊗|�(C).
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Proposition 4.35 In the above situation we have:

(1) The unit of the adjunction L A � θA, η : Id⇒ θA ◦ L A, is an equivalence.
(2) Let F ∈ AlgA⊗(C) and let

L A(F) : A� → C

be the underlying functor of∞-categories. Then L A(F) is a colimit dia-
gram.

(3) Let F ′ ∈ AlgA⊗|�(C) be such that the underlying functor

F ′ : A� → C

is a colimit diagram. Then the counit ε : L A ◦ θA ⇒ Id applied to F ′ is
an equivalence.

Proof For F ∈ AlgA⊗(C), the map

ηF : F → θA(L A(F))

exhibits L A(F) as the free A⊗|�-algebra generated by F . We thus get (1) and
(2) from parts (1) and (2) of Lemma 4.34 respectively.

For part (3), let F ′ ∈ AlgA⊗|�(C) be such that the underlying functor

F ′ : A� → C

is a colimit diagram. Consider the identity map f : θA(F ′) → θA(F ′), by
Lemma 4.34 f exhibits F ′ as the free A⊗|�-algebra generated by θA(F ′).
Thus the map εF ′ : L A(θA(F ′)) → F ′ is an equivalence.

We now turn to understanding symmetric monoidal functors with domain
(Z/n)⊗. This result will be used in the next two subsections.

Proposition 4.36 Let C be symmetric monoidal 1-category and let a be a
tensor invertible object in C such that a⊗n ∼= 1C . Assume that the symmetry
map βa,a = Ida⊗a, then there is a symmetric monoidal functor

(Z/n)⊗ → C

sending 1 to a.

Proof Without loss of generality, we may assume that C is skeletal. Thus we
may assume that a⊗n = 1C . Let m > 0 be the smallest positive integer such
that a⊗m = 1C . It follows that m|n. Consider the discrete subcategory of C
supported on a⊗i for i ≥ 0. By our assumption, the symmetry maps of powers

123



806 T. Barthel et al.

of a are identity maps. Thus, this discrete category is a symmetric monoidal
subcategory of C isomorphic to (Z/m)⊗. We compose with the symmetric
monoidal functor (Z/n)⊗ → (Z/m)⊗ to get the desired symmetric monoidal
functor.

4.6 Functorial weight decompositions

In this subsection we will use theC p−1-action described in Sect. 4.4 to decom-
pose E⊗Ŝk as a finite sum of (E⊗Ŝk)hC p−1-module spectra. We will develop
the theory of weights in the context of naive C p−1-equivariant modules over Ŝ
to produce a functorial decomposition. In the next subsection, this naturality
will be used to decompose the entire Amitsur complex of the map Ŝ → E .

Let Mod Ŝ be the∞-category of modules over Ŝ and let

(Mod Ŝ)
BC p−1 = Fun(BC p−1,Mod Ŝ)

be the∞-category of naive C p−1-equivariant modules over Ŝ. Since Mod Ŝ is
a symmetric monoidal ∞-category, the functor category is as well. We will
make use of the forgetful functor

U : (Mod Ŝ)
BC p−1 → Mod Ŝ

given by restriction along Be → BC p−1.

Lemma 4.37 There is an action of Z×p on Ŝ inducing the obvious action on

π∗ Ŝ.

Proof The canonical map

BZ → BZp

is an HFp-homology equivalence. This induces a map

S0 � �−1�∞BZ → �−1(�∞BZp)
∧
p

that factors to give a map

Ŝ → �−1(�∞BZp)
∧
p .

This is a map between p-complete connective spectra and it is an HFp-
homology equivalence, thus it is an equivalence. There is an obvious action of
Z×p on BZp and this induces the action on Ŝ that we desire.
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Let j ∈ Z/(p − 1) = hom(C p−1, Z×p ). Let Ŝ( j) be the p-complete sphere
equipped with the action of C p−1 induced by j . We are viewing this as a naive
C p−1-equivariant module. Let Ŝ(0) � Ŝ be the C p−1-spectrum determined by
j = 0, the zero homomorphism.
Now let B be a naive C p−1-equivariant module over Ŝ. We define

B j = (B ⊗Ŝ Ŝ(− j))hC p−1 .

Note that the underlying non-equivariantmodules of B⊗Ŝ Ŝ(− j) and B agree:

U (B ⊗Ŝ Ŝ(− j)) � U (B).

Lemma 4.38 Let Zp(− j) be Zp acted on by C p−1 through − j and let B ∈
(Mod Ŝ)

BC p−1 . Then there is an isomorphism of C p−1-modules

π∗(B ⊗Ŝ Ŝ(− j)) ∼= π∗(B)⊗Zp Zp(− j)

and an isomorphism of abelian groups

π∗(B j ) ∼= (π∗(B)⊗Zp Zp(− j))C p−1 .

Proof There is an isomorphism of C p−1-modules

π0(Ŝ(− j)) ∼= Zp(− j)

inducing a map of C p−1-modules

π∗(B)⊗Zp Zp(− j)→ π∗(B ⊗Ŝ Ŝ(− j))

and this is an isomorphism of abelian groups and thus an isomorphism of
C p−1-modules. The second isomorphism follows from the fact that p − 1 is
coprime to p so that the homotopy fixed points can be computed as the fixed
points.

Example 4.39 By Corollary 4.31 and Lemma 4.38, there are isomorphisms

πl((E⊗Ŝk) j ) ∼=
{

πl E⊗Ŝk if l ≡ 2 j mod 2(p − 1),

0 otherwise.

Thus, on the level of homotopy groups, we have an isomorphism

⊕

j∈Z/(p−1)
π∗((E⊗Ŝk) j )

∼=−→ π∗(E⊗Ŝk).
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We are going to promote this isomorphism to an equivalence of (E⊗Ŝk)0-
modules

⊕

j∈Z/(p−1)
(E⊗Ŝk) j

�−→ E⊗Ŝk .

In fact, we would like these equivalences to assemble into a decomposition of
the entire Amitsur complex E⊗Ŝ•+1. The next propositions deal with all of the
coherence involved in doing this.

Recall the construction of the∞-operad (Z/(p − 1))⊗ from Sect. 4.5.

Proposition 4.40 There is an object W ∈ Alg(Z/(p−1))⊗(Mod
BC p−1
Ŝ

) such
that

W ( j) = Ŝ(− j).

Proof We will construct a symmetric monoidal functor

W : (Z/(p − 1))⊗ → Mod
BC p−1
Ŝ

such thatW ( j) = Ŝ(− j). In particular,W canbe considered as a lax symmetric

monoidal functor and thus an object in Alg(Z/(p−1))⊗(Mod
BC p−1
Ŝ

). This will
be done in two steps.

First we produce a symmetric monoidal functor

(Z/(p − 1))⊗ → Ho(Mod
BC p−1
Ŝ

)

to the homotopy categorywith the correct property.We apply Proposition 4.36,
so we need to check two conditions.

First, we show that Ŝ(−1)⊗ j ∼= Ŝ(− j) (note that Ŝ(p − 1) = Ŝ(0) by

definition) in Ho(Mod
BC p−1
Ŝ

). We have an equivalence

Hom
Mod

BC p−1
Ŝ

(Ŝ(−1)⊗ j , Ŝ(− j)) � HomMod Ŝ
(U (Ŝ(−1))⊗ j , U (Ŝ(− j)))C p−1

� ŜhC p−1,

where the action in the middle is the conjugation action. The first equivalence
has been proven in the ∞-categorical setting in [23, Proposition 2.3]. The
conjugation action on the homotopy groups of Ŝ on the right hand side is
trivial since, on the level of homotopy groups, the weights are the same. Since
p − 1 is prime to p, we get ŜhC p−1 = Ŝ. Thus we have an equivariant map
lifting the identity.
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Second, we would like to prove that

βŜ(−1),Ŝ(−1) = Id Ŝ(−1)⊗Ŝ(−1) ∈ Map
Ho(Mod

BC p−1
Ŝ

)
(Ŝ(−1)⊗ Ŝ(−1), Ŝ(−1)⊗ Ŝ(−1)).

We have a symmetric monoidal forgetful functor

U : Ho(Mod
BC p−1
Ŝ

)→ Ho(Mod Ŝ).

Similarly to previous paragraph, U induces an isomorphism

Map
Ho(Mod

BC p−1
Ŝ

)
(Ŝ(−1)⊗ Ŝ(−1), Ŝ(−1)⊗ Ŝ(−1)) ∼=−→ MapHo(Mod Ŝ)(Ŝ ⊗ Ŝ, Ŝ ⊗ Ŝ)

sending βŜ(−1),Ŝ(−1) to βŜ,Ŝ , but βŜ,Ŝ = Id Ŝ⊗Ŝ as Ŝ is the unit. Now Proposi-
tion 4.36 furnishes us with the functor.

Finally, we show that the symmetric monoidal functor

(Z/(p − 1))⊗ → Ho(Mod
BC p−1
Ŝ

)

lifts to a functor

(Z/(p − 1))⊗ → Mod
BC p−1
Ŝ

.

By passing to Picard spectra, we are looking for a lift in the diagram:

pic(Mod
BC p−1
Ŝ

)

HZ/(p − 1) pic(Mod
BC p−1
Ŝ

)[0, 1],

where pic(Mod
BC p−1
Ŝ

)[0, 1] is the first Postnikov truncation of pic(Mod
BC p−1
Ŝ

).
The obstruction to this lift is in the abelian group

[
HZ/(p − 1), � pic(Mod

BC p−1
Ŝ

)[2,∞]].

But

πi
(
� pic(Mod

BC p−1
Ŝ

)[2,∞]) = 0 for i < 3
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and

πi
(
� pic(Mod

BC p−1
Ŝ

)[2,∞]) = πi−2(Ŝ) for i ≥ 3

so all of the homotopy groups of � pic(Mod
BC p−1
Ŝ

)[2,∞] are finite of order
prime to (p − 1).

Recall from [36, Example 3.2.4.4] that if C⊗ is a symmetric monoidal∞-
category and O⊗ is an∞-operad, then the∞-category AlgO⊗(C) inherits a
symmetric monoidal structure given by pointwise tensor product.

Proposition 4.41 Let D be a small∞-category and let

B• ∈ CAlg

((
Mod

BC p−1
Ŝ

)D
)
� CAlg(Mod

BC p−1
Ŝ

)D.

There exists

X• ∈ AlgZ/(p−1)⊗|�(ModD
Ŝ
),

depending on B•, such that:

(1) For all j ∈ Z/(p − 1) we have an equivalence

X•( j) � (B•) j ∈ ModD
Ŝ

.

(2) Let X•(∗) ∈ CAlg(ModD
Ŝ
) be the restriction to the cone point. Then we

have an equivalence

X•(∗) � U (B•) ∈ CAlg(ModD
Ŝ
).

Proof Recall that in Proposition 4.40 we constructed an object

W ∈ Alg(Z/(p−1))⊗(Mod
BC p−1
Ŝ

).

In Proposition 4.35, for A a finite abelian group, we studied a functor

L A : AlgA⊗(C)→ AlgA⊗|�(C).

Thus we have a lax symmetric monoidal functor

LZ/(p−1)(W ) : Z/(p − 1)⊗|� → Mod
BC p−1
Ŝ

.
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Postcomposition with the restriction along the map D → ∗ gives a map

L• : Z/(p − 1)⊗|� →
(
Mod

BC p−1
Ŝ

)D
.

Now given

B• ∈ CAlg
((
Mod

BC p−1
Ŝ

)D)
,

pulling back with respect to the (unique) map Z/(p− 1)⊗|� → E∞ produces

an object in AlgZ/(p−1)⊗|�
((
Mod

BC p−1
Ŝ

)D)
that wewill abusively also denote

by B•. Now we may tensor B• with L• in AlgZ/(p−1)⊗|�
((
Mod

BC p−1
Ŝ

)D)
.

This provides us with an object

B• ⊗ L• ∈ AlgZ/(p−1)⊗|�
((
Mod

BC p−1
Ŝ

)D)
.

Note that the homotopy fixed point functor

(−)hC p−1 : Mod
BC p−1
Ŝ

→ Mod Ŝ

is lax symmetric monoidal by [36, Corollary 7.3.2.7] as it is right adjoint to

the constant functor Mod Ŝ → Mod
BC p−1
Ŝ

. We set

X• = (B• ⊗ L•)hC p−1 ∈ AlgZ/(p−1)⊗|�(ModD
Ŝ
).

All of the properties of X• can be checked objectwise in D. Property (1)
follows from the definition and Property (2) follows from Proposition 4.35
and can be checked on homotopy groups.

Our goal is to apply Proposition 4.41 to the Amitsur complex of Ŝ → E .
This allows us to apply the theory of weights to the entire cosimplicialE∞-ring
spectrum

E⊗Ŝ•+1.

Let D = �, let

B• = E⊗Ŝ•+1 ∈ CAlg
((
Mod

BC p−1
Ŝ

)�)
,

and let

X•p ∈ AlgZ/(p−1)⊗|�(Mod�

Ŝ
)
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be the object constructed in Proposition 4.41. Note that this depends on the
prime.Apart of this dependencemay be removed by considering the restriction
along the canonical map

Z⊗|� q−→ Z/(p − 1)⊗|�.

Let Y •p = X•p ◦ q. The next result follows from Proposition 4.41 and Example
4.39.

Proposition 4.42 The object

Y •p ∈ AlgZ⊗|�(Mod�

Ŝ
)

satisfies the following properties:

(1) For all j, l ∈ Z and [n] ∈ � the map

πl(Yp
[n]( j)) → πl(Yp

[n](∗))

is an isomorphism on πl if l = 2 j mod 2(p − 1) and it is the inclusion of
zero otherwise, where

Yp
• : Z� → Mod�

Ŝ

is the underlying functor of∞-categories.
(2) The restriction to the cone point Y •p(∗) ∈ CAlg(Mod�

Ŝ
) is equivalent to

the Amitsur complex. That is, we have an equivalence

Y •p(∗) � E⊗Ŝ•+1 ∈ CAlg(Mod�

Ŝ
).

4.7 Formality of the ultraproduct

The goal of this subsection is to prove Theorem 4.14.
The symmetricmonoidal structure onGrAbQ induces a symmetricmonoidal

structure on AlgZ⊗(GrAbQ)with the unit e the constant functor with value the
unit.

Proposition 4.43 There is an invertible object L2 ∈ AlgZ⊗(GrAbQ) given by

L2(i) ∼= Q[2i],

where Q[2i] is the object with Q in degree 2i and 0 everywhere else.
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Proof To construct L2, we apply Proposition 4.36. Since

βQ[i],Q[i] = (−1)i2 IdQ[i]⊗Q[i],

it follows that

βQ[2],Q[2] = IdQ[2]⊗Q[2] .

Since the image of L2 consists of invertible objects, L2 is invertible.

We denote the inverse to L2 by L−2 so that

L−2(i) ∼= Q[−2i].

Proposition 4.44 Let F ∈ AlgZ⊗(SpD
Q

) be such that π∗(F(i)(d)) is concen-
trated in degree 2i . Then F is in the image of

H D : AlgZ⊗(GrAbD
Q)→ AlgZ⊗(SpD

Q).

Proof By pulling back along D → ∗, we will view L2 and L−2 as objects in
AlgZ⊗(GrAbD

Q
). Let

G = F ⊗ H D(L−2).

All of the objects in the image of G are concentrated in degree 0. Thus G
lands in AlgZ⊗(SpQ[0, 0]D) and Lemma 4.7 implies that G is in the image
H D . Thus G � H Dπ D∗ (G), where π D∗ (G) is in AlgZ⊗(GrAbD

Q
).

We now use the first statement in Lemma 4.7 to conclude that

H D(π D∗ (G)⊗ L2) � H D(π D∗ (G))⊗ H D(L2)

� G ⊗ H D(L2)

= F ⊗ H D(L−2)⊗ H D(L2)

� F ⊗ H D(L−2i ⊗ L2)

� F ⊗ H D(e)

� F.
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Proposition 4.45 Let F ∈ AlgZ⊗|�(SpD
Q

) and assume that for all i ∈ Z and
d ∈ D the graded abelian group

π∗(F(i)(d))

is concentrated in degree 2i and that

F : Z� → SpD
Q

is a colimit diagram. Then F(∗) ∈ CAlg(SpD
Q

), the restriction to the terminal
object, is formal.

Proof Consider the following collection of∞-categories and functors:

AlgZ⊗(GrAbD
Q

)
H D
Z

LGrAb
Z

AlgZ⊗(SpD
Q

)

LSp
Z

AlgZ⊗|�(GrAbD
Q

)
H D
Z�

AlgZ⊗|�(SpD
Q

).

The horizontal arrows are induced by postcomposition with

H D : GrAbD
Q → SpD

Q .

Thevertical arrows are the left adjoints to the natural restrictionmaps θGrAb
Z

and

θ
Sp
Z
. First we prove that this diagram commutes. It is clear that H D

Z
◦ θGrAb

Z
=

θ
Sp
Z
◦ H D

Z� since the θ ’s are induced by precomposition. Using the L � θ

adjunctions studied in Proposition 4.35, we get a natural transformation

β : LSp
Z
◦ H D

Z ⇒ H D
Z� ◦ LGrAb

Z .

We need to show that β is an equivalence, but this can checked on the under-
lying functors. Now by parts (1) and (2) of Proposition 4.35 the underlying
functor produced by either L is a coproduct diagram and H D respects coprod-
ucts.

Recall that θZF ∈ AlgZ⊗(SpD
Q

) is the restriction of F . Let

G = π∗(θZ(F)) ∈ AlgZ⊗(GrAbD
Q).
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Proposition 4.44 implies that θZF � H D
Z

(G). Now by part (3) of Proposition
4.35,

F � LSp
Z

(θZF),

so we have equivalences

F � LSp
Z

(θZF) � LSp
Z

(H D
Z (G)) � H D

Z�(LGrAb
Z (G)).

Thus F is in the image of H D
Z� and so F(∗) is in the image of H D .

Lemma 4.46 The homotopy groups of the spectrum

∏
F

(
(E
⊗Ŝk
n,p ) j

)

are concentrated in degree 2 j and the canonical map

∏
F

(
(E
⊗Ŝk
n,p ) j

)→
∏

F (E
⊗Ŝk
n,p )

is an isomorphism in degree 2 j . In particular, the canonical map

⊕

j∈Z

∏
F

(
(E
⊗Ŝk
n,p ) j

)→
∏

F (E
⊗Ŝk
n,p )

is an equivalence of spectra.

Proof Both statement follows immediately from the fact thatπ∗(−) commutes
with ultraproducts and Example 4.39.

Recall the definition of

Y •p ∈ AlgZ⊗|�(Mod�

Ŝ
)

from Proposition 4.42. In particular, Y •p(∗) is the Amitsur complex of the map

Ŝ → En,p. The goal of the section is to study the formality of the ultraproduct
of these Amitsur complexes at a non-principal ultrafilter.

Now we construct the ultraproduct. Let F be a non-principal ultrafilter on
the set of primes. Consider the product

∏
p∈PY •p : Z⊗|� −→ (∏

p∈P Mod Ŝp

)�
.
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Postcomposing with the canonical map

∏
p∈P Mod Ŝp

n◦m◦[−]−−−−−→
∏��

F Mod Ŝp

produces a lax functor

Z⊗|� −→ (∏��

F Mod Ŝp

)�
.

But Theorem 3.63 implies that

∏��

F Mod Ŝp
� Mod∏

F Ŝp

and, since
∏

F Ŝp � HZF , we have a lax functor

Z⊗|� −→ Mod�
HZF .

Since ZF is a Q-algebra, we may forget to ModHQ � SpQ. This gives us a
lax functor

Y •F : Z⊗|� −→ Sp�
Q .

This object has been constructed so that

Y •F (∗) �
∏

F E
⊗Ŝ•+1
n,p .

Theorem 4.47 There is an equivalence of cosimplicial E∞-rings

∏
F E

⊗Ŝ•+1
n,p �

∏
F (E

⊗Ŝ•+1
n,p )�.

Proof To prove that this cosimplicialE∞-ring
∏

F E
⊗Ŝ•+1
n,p � Y •F (∗) is formal,

it suffices to show that Y •F satisfies the conditions of Proposition 4.45. But this
follows immediately from Proposition 4.42 and Lemma 4.46.

5 Descent

The goal of this section is to prove Theorem 5.1. The∞-category Frn,p appear-
ing on the right hand side is constructed in Sect. 5.3.Wewrite En,p forMorava
E-theory at height n and the prime p.
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Theorem 5.1 For any non-principal ultrafilterF onP , there is an equivalence
of symmetric monoidal compactly generated rational stable∞-categories

∏Pic

F Spn,p �
∏Pic

F Frn,p .

5.1 Abstract descent

We begin by recalling some facts regarding∞-categorical descent theory. We
then explore the relation between∞-categorical descent and the Pic-generated
protoproduct. These operations do not commute in general. This subsection
culminates in Corollary 5.18, which provides conditions under which the Pic-
generated protoproduct commutes with descent. This corollary will be applied
on both the topological side and the algebraic side in order to prove Theorem
5.1.

Suppose that (C,⊗, 1) is a symmetric monoidal compactly generated stable
∞-category. If A ∈ C is a commutative algebra object in C, we will write
A⊗•+1 ∈ C� for the Amitsur complex of A defined in Sect. 4.2, i.e., the
cosimplicial diagram

A A⊗2 A⊗3 · · · .

Similarly, ModA⊗•+1(C) denotes the associated cosimplicial diagram of ∞-
categories of modules over A⊗•+1 in C:

ModA(C) ModA⊗2(C) ModA⊗3(C) · · · .

In [41, Proposition 3.22], Mathew provides a condition under which C can
be recovered from this cosimplicial diagram: if the tower {Totm(A⊗•+1)}m≥0
of partial totalizations associated to the cosimplicial diagram A⊗•+1 is pro-
constant with limit 1, then the natural functor

C � lim(ModA⊗•+1(C))

is an equivalence of symmetric monoidal∞-categories. The limit here is cal-
culated in Cat∞. To prove a version of this result for protoproducts, we are
inspired by Mathew’s proof strategy.

Bousfield [12] provides a convenient criterion for checking the assumption
on the Tot-tower, an∞-categorical formulation of which can be found in [41].
To state it, we have to recall some auxiliary notation, first introduced in [31].
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Definition 5.2 Let CN be the∞-category of towers of objects in C. A tower
{Ym} ∈ CN is said to be strongly pro-constant if it satisfies the following
condition:

Let X = limm Ym and let {X} ∈ CN denote the constant tower on X . Then
the cofiber of the natural map {X} → {Ym} is nilpotent, i.e., there exists an
r ≥ 1 such that any r -fold composite in this tower is 0.

The smallest integer r ≥ 1 with this property will be called the nilpotence
degree of {Ym}.

Note that, in particular, strongly pro-constant towers are pro-constant.

Definition 5.3 A commutative algebra A in C has fast-degree r if the Tot-
tower associated to the Amitsur complex is strongly pro-constant of nilpotence
degree r . If there is no such natural number, then we will say the fast-degree
of A is∞.

Definition 5.4 If A is a commutative algebra in C such that −⊗ A is conser-
vative and the fast-degree of A is less than∞, then we will call A descendable.

Wewill make use of the following result, which follows from [41, Corollary
4.4].

Proposition 5.5 (Mathew) If A ∈ C is descendable, then, for any object Y ∈
C,

Y � Tot(A⊗•+1 ⊗ Y ).

In general, if X and Y are objects in C and A is a commutative algebra in
C, the cosimplicial spectrum

Hom(X, A⊗•+1 ⊗ Y )

gives rise to a spectral sequence computing Hom(X, Y ). We call this spectral
sequence the A-based Adams spectral sequence.

Definition 5.6 A commutative algebra A in C has vanishing-degree r if for
all X, Y objects in C, the corresponding A-based Adams spectral sequence
collapses at the r th page with a horizontal vanishing line of intercept r . If
there is no such natural number, then we will say the vanishing-degree is∞.

In [40, Proposition 3.12], Mathew proves that the fast-degree is less than
∞ if and only if the vanishing-degree is less than∞. A careful reading of his
proof gives the following lemma:
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Lemma 5.7 Let A be a commutative algebra in C, let v be its vanishing-degree
and let f be its fast-degree. Then

v ≤ f + 1 and f ≤ 2v.

Lemma 5.8 Let F : C → D be a symmetric monoidal exact functor between
presentably symmetric monoidal stable∞-categories. Let A be a commutative
algebra in C of fast-degree r . Then F(A) is a commutative algebra in D of
fast-degree r .

Proof First note that F sends nilpotent towers to nilpotent towers. The functor
F commutes with tensor powers, cofiber sequences, Totn , and sends zero-
maps to zero-maps. If A is a commutative algebra in C of fast degree r , it thus
follows that the cofiber of the natural map

{F(Tot(A⊗•+1))} → {F(Totn(A⊗•+1))} � {Totn(F(A⊗•+1))}

is nilpotent. Therefore, in order to show that F(A) has fast-degree r , it suffices
to prove that

F(Tot(A⊗•+1)) � Tot(F(A)⊗•+1).

Applying F to the cofiber sequence of towers

{Tot(A⊗•+1)} → {Totn(A⊗•+1)} → {Ci }

gives the cofiber sequence of towers

{F(Tot(A⊗•+1))} → {Totn(F(A)⊗•+1)} → {F(Ci )}.

Since the tower {F(Ci )} is nilpotent, taking the inverse limit of the tower gives
the cofiber sequence

F(Tot(A⊗•+1)) → Tot(F(A)⊗•+1)→ 0,

which proves the claim.

Proposition 5.9 Let F be an ultrafilter on I and let (Y •i )i∈I be a collection of
cosimplicial spectra. Denote the Bousfield–Kan spectral sequence associated
to Y •i by Es,t

r (Y •i ), where s is the cohomological grading. Assume that, for
each k ∈ Z, there exists an rk and sk such that for each i in some set V in the
ultrafilter F , Es,t

rk (Y •i ) = 0 for all t−s = k and s > sk (ie. for each k ∈ Z, the
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filtration in the kth column is finite for some set in the ultrafilter). This implies
that the natural map

∏
F Tot(Y •i ) −→ Tot(

∏
FY •i )

is an equivalence.

Proof By intersecting each set in the ultrafilterF with V , we may assume that
V = I . We may rewrite the natural map above as

colim
U∈F lim•∈�

∏
i∈U

Y •i −→ lim•∈�
colim
U∈F

∏
i∈U

Y •i .

We will apply Proposition 3.3 of [43] to show that it is an equivalence by
verifying that the map satisfies the conditions used in the proof. In the notation
of [43], we will let

XU = lim•∈�

∏
i∈U

Y •i

for U ∈ F , and

X = lim•∈�
colim
U∈F

∏
i∈U

Y •i .

The spectral sequence we will use is the Bousfield–Kan spectral sequence.
The first condition required for the proof is that there are no nontrivial

elements in π∗colim
U

XU with infinite filtration. To satisfy this condition, in

view of Remark 3.6 in [43], it is enough to have that for each k ∈ Z andU ∈ F ,
the filtration in the kth column is finite at some fixed page for the Bousfield–
Kan spectral sequence associated to

∏
i∈U Y •i . This is our assumption, so this

first condition is satisfied.
To satisfy the second condition we must show that there is an isomorphism

colim
U∈F Hqπs

∏
i∈U

Y •i
∼=−→ Hqπscolim

U∈F
∏

i∈U
Y •i ,

for all q and s, but this follows from the fact that homology commutes with
filtered colimits and that the sphere is compact. Thus the natural map is an
equivalence.

Throughout the remainder of this section, the totalization of a cosimpli-
cial diagram of compactly generated∞-categories E•, denoted Tot(E•), will
always refer to the limit taken in the∞-category of compactly generated∞-
categories.
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Proposition 5.10 Let (Ci )i∈I be a collection of symmetric monoidal com-
pactly generated stable ∞-categories with compact unit and let (Ai )i∈I be a
collection of descendable objects such that there exists r > 0 such that for all
but finitely many i ∈ I , Ai has fast-degree less than or equal to r . Then the
canonical symmetric monoidal functor

∏Pic
F Ci

F Tot(
∏Pic

F ModA⊗•+1i
(Ci ))

is fully faithful, where the totalization takes place in the ∞-category of com-
pactly generated∞-categories.

Proof By restricting to a smaller set in the ultrafilter, we may assume that
conditions of the statement hold for all i ∈ I .

It suffices to check this on the mapping spectrum Hom([Xi ], [Yi ]) between
compact objects [Xi ] and [Yi ]. We must show that the map

Hom∏Pic
F Ci

([Xi ], [Yi ])→ HomTot(
∏Pic

F Mod
A⊗•+1i

(Ci ))
(F[Xi ], F[Yi ])

is an equivalence. We will identify this with the natural map

∏
F Tot(HomCi (Xi , A⊗•+1i ⊗ Yi )) −→ Tot(

∏
F HomCi (Xi , A⊗•+1i ⊗ Yi )),

which is given by the composition

∏
F Tot(HomCi (Xi , A⊗•+1i ⊗ Yi ))

�
∏

F HomCi (Xi , Yi )

� Hom∏Pic
F Ci

([Xi ], [Yi ])
→ HomTot(

∏Pic
F Mod

A⊗•+1i
(Ci ))

(F[Xi ], F[Yi ])

� HomTot(
∏Pic

F Mod
A⊗•+1i

(Ci ))
([A⊗•+1i ⊗ Xi ], [A⊗•+1i ⊗ Yi ])

� Tot Hom∏Pic
F Mod

A⊗•+1i
(Ci )

([A⊗•+1i ⊗ Xi ], [A⊗•+1i ⊗ Yi ])

� Tot
∏

F HomMod
A⊗•+1i

(Ci )(A⊗•+1i ⊗ Xi , A⊗•+1i ⊗ Yi )

� Tot
∏

F HomCi (Xi , A⊗•+1i ⊗ Yi ).

The first equivalence follows from Proposition 5.5. The second equivalence
follows by the compactness of [Xi ] and [Yi ] and Proposition 3.12. The third
equivalence is the definition of F . The fourth equivalence follows from general
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facts regarding mapping spectra in limits of ∞-categories. The fifth equiv-
alence follows from the compactness of [A⊗k

i ⊗ Xi ] and [A⊗k
i ⊗ Yi ] and

Proposition 3.12. The last equivalence follows from the free-forgetful adjunc-
tion.

We apply Proposition 5.9 to the collection of cosimplicial spectra

(HomCi (Xi , A⊗•+1i ⊗ Yi ))i∈I .

By our assumption on the collection (Ai )i∈I and Lemma 5.7, (Ai )i∈I has
bounded vanishing-degree. Proposition 5.9 implies the map is an equivalence.

Remark 5.11 The previous result holds for the protoproduct, bounded proto-
product, and Pic-generated protoproduct.

Recall that the Picard spectrum of a symmetric monoidal ∞-category C,
pic(C), is the spectrum associated to the symmetric monoidal∞-groupoid of
invertible objects. As a functor to connective spectra, pic preserves all limits
and filtered colimits of symmetric monoidal∞-categories by [45, Proposition
2.2.3].

The Picard space functor is denoted by Pic; it is related to the spectrum-
valued functor pic by a canonical equivalence Pic � �∞ pic. Given a
symmetric monoidal ∞-category C, we will write Loc Pic(C) for the local-
izing subcategory generated by Pic(C).

Let ι0 : Sp≥0 � Sp : τ≥0 be the inclusion/truncation adjunction between
the∞-categories of spectra and connective spectra.When wewant to consider
the Picard spectrum functor as taking values in the category of spectra, we will
write ι0 pic.

The goal of the next proposition is to identify the essential image of the
functor F constructed in Proposition 5.10 as the localizing subcategory on
Pic(C).

Lemma 5.12 Let (Ci )i∈I be a collection of Pic-compactly generated sym-
metric monoidal ∞-categories. Then there is a canonical equivalence of
connective spectra

pic(
∏Pic

F Ci ) �
∏

F pic Ci .

Proof This follows from the proof of Lemma 3.55.

Proposition 5.13 Let (Ci )i∈I and (Ai )i∈I be as in Proposition 5.10 and
also assume that the Ai -based Adams spectral sequence for End(1Ci ) =
Hom(1Ci , 1Ci ) collapses at the E2-page on some set in the ultrafilter F . The
canonical functor
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∏Pic
F Ci

F Tot(
∏Pic

F ModA⊗•+1i
(Ci ))

induces an equivalence of spaces

Pic(
∏Pic

F Ci )
� Pic(Tot(

∏Pic
F ModA⊗•+1i

(Ci ))).

Proof Applying pic to the symmetric monoidal functor F gives a map of
connective spectra

pic(
∏Pic

F Ci ) pic(Tot(
∏Pic

F ModA⊗•+1i
(Ci ))).

As a functor to connective spectra, pic commutes with totalizations of symmet-
ric monoidal∞-categories by [45, Proposition 2.2.3]. Under the assumption
that all of the Ci are compactly generatedwith compact unit, pic commuteswith
totalizations of compactly generated symmetric monoidal∞-categories with
compact unit, because invertible objects in these∞-categories are compact.
Now Lemma 5.12 implies that the map above is equivalent to the map

∏
F pic(Ci ) � τ≥0

∏
F Tot(ι0 pic(ModA⊗•+1i

(Ci )))

→ τ≥0 Tot(
∏

F ι0 pic(ModA⊗•+1i
(Ci ))),

where the totalizations are taking place in the∞-category of spectra. Thus it
suffices to prove that the map

∏
F Tot(ι0 pic(ModA⊗•+1i

(Ci ))) → Tot(
∏

F ι0 pic(ModA⊗•+1i
(Ci )))

is an equivalence of spectra for which we would like to apply Proposition 5.9.
For this we would like to show that the Bousfield–Kan spectral sequence

associated to the cosimplicial spectrum

ι0 pic(ModA⊗•+1i
(Ci ))

satisfies the conditions of Proposition 5.9. We will compare this spectral
sequence to the spectral sequence associated to the cosimplicial spectrum

Hom(1Ci , A⊗•+1i ).

We will use Adams grading, so in particular a column means the collection of
groups Es,t

2 , where t − s is fixed. For each k ∈ Z, the two spectral sequences
agree up to a shift at all but finitely many places in the kth column independent
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of i ∈ U . This follows from the fact that the homotopy groups of the two
cosimplicial spectra that we are considering agree up to a shift after taking the
2-connected cover. Thus for each column, the discrepency between the two
spectral sequences appears in at most two entries. Finally, by assumption, the
spectral sequence associated to the cosimplicial spectrum

Hom(1Ci , A⊗•+1i )

satisfies the condition of Proposition 5.9, and thus the spectral sequence asso-
ciated to the cosimplicial spectrum

ι0 pic(ModA⊗•+1i
(Ci ))

satisfies the condition of Proposition 5.9 as well.

Remark 5.14 It is possible to prove Proposition 5.13 under theweaker assump-
tion that the spectral sequence collapses at the Er -page on some set in the
ultrafilter. However, the proof requires a more careful comparison between
the Ai -based spectral sequence of pic(Ci ) and End(1Ci ). A careful compari-
son between the differentials in these two spectral sequences appears in [45].
However, the proof of this stronger version of Proposition 5.13 would require
a lengthy and ultimately unnecessary digression.

Theorem 5.15 Let (Ci )i∈I and (Ai )i∈I be as in the statement of Proposi-
tion 5.13. There is a canonical equivalence of symmetric monoidal stable
∞-categories

∏Pic

F Ci � Loc Pic(Tot(
∏Pic

F ModA⊗•+1i
(Ci ))).

Proof There is a canonical colimit preserving functor

∏Pic

F Ci → Tot(
∏Pic

F ModA⊗•+1i
(Ci )),

which is fully faithful by Proposition 5.10.
ByProposition 5.13, themap is an equivalence after applying Pic(−). Corol-

lary 3.59 implies that

∏Pic

F Ci � Loc Pic(
∏Pic

F Ci ).

Therefore, we get the desired equivalence.
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Lemma 5.16 Let C• and D• be cosimplicial∞-categories and let f • : C• →
D• be a map that is degree-wise fully faithful. If f 0 : C0 → D0 is an equiva-
lence, then

Tot f • : Tot C• → TotD•

is an equivalence.

Proof Wewill begin by proving the result in the case that C• andD• are cosim-
plicial∞-groupoids. Let F• be afiber of themap f •. Since f [k] is fully faithful,
the∞-groupoid F [k] is either contractible or empty. Since f 0 is an equivalence
F [0] is contractible. This immediately implies that F [k] must be non-empty
and contractible for all k ≥ 0. Since totalization commutes with taking the
fiber and since the totalization of a cosimplicial diagram of contractible spaces
is contractible, we have that every fiber of Tot f • is contractible. This implies
that Tot f • is an equivalence.

For the general case, it is enough to show that for every∞-category T the
map

Tot(MapCat∞(T, C•)) → Tot(MapCat∞(T,D•))

is an equivalence. Since

MapCat∞(C,D) � Fun(C,D)�

and since Fun(T, •) preserves fully faithfulmaps and categorical equivalences,
the lemma is now reduced to the∞-groupoid case.

Recall that limits in the ∞-category of presentable ∞-categories and in
the ∞-category of presentably symmetric monoidal ∞-categories may be
computed in Cat∞. Lemma 5.16 makes it clear that a further constraint on
the collection (Ai )i∈I leads to a close relationship between the Pic-generated
protoproduct and the protoproduct.

Corollary 5.17 Let (Ci )i∈I and (Ai )i∈I be as in the statement of Proposition
5.13 and also assume that the canonical map

∏�

F ModAi (Ci )
�−→

∏Pic

F ModAi (Ci )

is an equivalence. Then there is an equivalence of symmetric monoidal ∞-
categories

Tot(
∏Pic

F ModA⊗•+1i
(Ci )) � Tot(

∏�

F ModA⊗•+1i
(Ci ))
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and thus an equivalence of symmetric monoidal∞-categories

∏Pic

F Ci � Loc Pic(Tot(
∏�

F ModA⊗•+1i
(Ci ))).

We say that a symmetric monoidal compactly generated∞-category C is
monogenic if 1 is a compact generator of C.

Corollary 5.18 Let (Ci )i∈I and (Ai )i∈I be as in the statements of Corol-
lary 5.17 and assume that Ci is monogenic for all i ∈ I . Then there is a
canonical equivalence of symmetric monoidal∞-categories

∏Pic

F Ci
�−→ Loc Pic Tot(

∏�

F ModHom(1Ci
,A⊗•+1i )

).

Proof Let i ∈ I and k ≥ 0. The monogenicity assumption on Ci implies that
the symmetric monoidal ∞-category ModA⊗k+1

i
(Ci ) is compactly generated

by its unit A⊗k+1
i , whose endomorphism ring spectrum is readily computed

as

EndMod
A⊗k+1

i
(Ci )(A⊗k+1

i ) � HomCi (1Ci , A⊗k+1
i ).

It thus follows from Schwede–Shipley’s version of Morita theory Theorem
3.48 that there is a symmetric monoidal equivalence

ModA⊗•+1i
(Ci ) � ModHom(1Ci

,A⊗•+1i )
,

where the right hand side refers to modules in the∞-category of spectra. For
varying k, these equivalences are compatible with the cosimplicial structure
maps, thus inducing a symmetric monoidal equivalence

ModA⊗•+1i
(Ci ) � ModHom(1Ci

,A⊗•+1i )
.

Combining this with Corollary 5.17, we obtain the desired equivalence.

5.2 Descent for the E-local categories

The goal of this subsection is to show that (Cp)p∈P = (Spn,p)p∈P and
(Ap)p∈P = (En,p)p∈P satisfy the conditions of Corollary 5.18. It is clear
that Spn,p is a symmetric monoidal monogenic stable∞-category. It remains
to show that En,p has finite vanishing-degree independent of p.

Let E = En,p and letM≤n
fg (p) be the p-local moduli stack of formal groups

of height less than or equal to n. In [44], Morava shows that the stabilizer
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group has finite cohomological dimension n2 for large enough primes. Via
the chromatic spectral sequence, this implies the following result, a proof of
which can be found for example in [18, Theorem 3.4.9].

Proposition 5.19 (Franke, Morava) The cohomological dimension of the
stack M≤n

fg (p) is n2 + n for all p > n + 1.

The E-based Adams spectral sequence is a spectral sequence of the form

Ext∗E∗E (E∗(X), E∗(Y )) !⇒ π∗HomSpE
(X, Y ).

The finite cohomological dimension of M≤n
fg (p) implies that, for any X and

Y , there is a horizontal vanishing on the E2-page of the spectral sequence with
prime-independent intercept (for large enough primes) of the vanishing line.
For this conclusion, see [33, Proof of Theorem 5.4].

Proposition 5.20 For any height n and for p large enough with respect to n,
there exists a constant s0, independent of p, such that the En,p-based Adams
spectral sequence for any spectrum Y has a horizontal vanishing line of inter-
cept s0 at the E2-page.

Remark 5.21 Hopkins and Ravenel ([49, Chapter 8]) proved that there is an
r ∈ N so that a horizontal vanishing line occurs on the Er -page independent
of the choice of prime.

Lemma 5.22 For any ultrafilter F on P , there is an equivalence of symmetric
monoidal∞-categories

∏Pic

F ModEn,p �
∏�

F ModEn,p .

Proof Baker–Richter [13] prove that the Picard group of ModEn,p is Z/2 (rep-
resented by En,p and �En,p). Thus the Pic-filtration and the cell filtration on
ModEn,p agree and the protoproducts are equivalent.

Thus we may take (Cp)p∈P = (Spn,p)p∈P and (Ap)p∈P = (En,p)p∈P in
Corollary 5.18 and conclude the following:

Corollary 5.23 For any ultrafilter F on P , there is a canonical symmetric
monoidal equivalence of symmetric monoidal∞-categories

∏Pic

F Spn,p � Loc Pic(Tot(
∏�

F ModE⊗•+1n,p
)).

123



828 T. Barthel et al.

5.3 The algebraic model

Let E = En,p. We produce an ∞-category that is an algebraic analogue of
Spn,p out of a model category of quasi-periodic complexes of E0E-comodules
first described in [18].

Let (A, �) be an Adams Hopf algebroid in the sense of [30, Section 1.4],
i.e., a cogroupoid object in the category of commutative rings such that � is
flat over A and satisfies a certain technical condition. Let (A, �)−Comod be
the 1-category of (A, �)-comodules. An introduction to this category is given
in [30,48]. In particular (A, �)− Comod is a Grothendieck abelian category.
Furthermore, (A, �) − Comod has a natural symmetric monoidal structure
⊗A = ⊗with unit A, which is compatible with the usual symmetric monoidal
structure on ModA. Therefore, we get a symmetric monoidal adjunction

forget : (A, �)− Comod A −Mod : − ⊗A�.

An (A, �)-comodule L is invertible if the underlying A-module is invertible
as an A-module.

LetA be a symmetric monoidal Grothendieck abelian category and let L be
an invertible object in A. Associated to this data, Barnes and Roitzheim [14]
construct a category of quasi-periodic chain complexes of objects in A. We
recall their construction in the caseA = (A, �)−Comod. Given an invertible
(A, �)-comodule L , let

C (L ,2)((A, �)− Comod)

be the category of quasi-periodic chain complexes of (A, �)-comodules. The
objects of this category are pairs (X, q), where X is an unbounded complex
of (A, �)-comodules and q is an isomorphism

q : X [2] ∼= X ⊗A L .

Morphisms in C (L ,2)((A, �) − Comod) are maps of complexes that respect
the fixed isomorphism.

Let Ch((A, �) − Comod) be the category of complexes of (A, �)-
comodules. By [14, Lemma 1.2], there is an adjunction

P : Ch((A, �)− Comod) C (L ,2)((A, �)− Comod) :U,

where U is the forgetful functor and P is the “periodization” functor

P(Y ) =
⊕

k∈Z

(Y ⊗ L⊗k[2k]).
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There is a natural symmetric monoidal structure on C (L ,2)((A, �)−Comod),
the periodized tensor product, such that P is symmetricmonoidal. In particular,
the unit of this symmetric monoidal structure is P(A). Moreover, we obtain a
projection formula in this context:

Lemma 5.24 Let A be a symmetric monoidal Grothendieck abelian category.
In the situation of the above adjunction, for any X ∈ C (L ,2)(A) and Y ∈
Ch(A), the natural morphism

U X ⊗ Y U (X ⊗ P(Y )), (5.25)

is an equivalence. Here, the tensor product ⊗ has to be interpreted in the
corresponding categories.

Proof This is a general categorical fact. The canonical map is constructed as
the adjoint of the composite

P(U (X)⊗ Y ) � PU (X)⊗ P(Y ) X ⊗ P(Y ),

using the counit of the adjunction (P, U ) and the fact that P is symmetric
monoidal. To check it is an equivalence, it suffices to consider Y a compact
generator of Ch(A), as both P and U preserve arbitrary colimits. Such Y can
be taken to be comodules which are finite free E0-modules, from which the
claim follows immediately.

FollowingBarnes andRoitzheim [14], whowere building onwork of Franke
[18] and Hovey [30], we are now ready to construct the model category which
gives rise to our algebraic model for the E-local category.

Theorem 5.26 Let L be an invertible object in (E0, E0E) − Comod. There
is a model structure on the category of quasi-periodic chain complexes of
E0E-comodules,

C (L ,2)((E0, E0E)− Comod),

whose weak equivalences are quasi-isomorphisms of the underlying maps of
chain complexes, and which satisfies the following properties:

(1) The resulting model category is cofibrantly generated, proper, stable, and
symmetric monoidal.

(2) There is a Quillen adjunction

U : C (L ,2)((E0, E0E)− Comod) � Ch((E0, E0E)− Comod) : P

with symmetric monoidal left adjoint.
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(3) For primes p > n + 1, this model category is monogenic, i.e., compactly
generated by its tensor unit P(E0).

(4) For primes p > n + 1, the object P(E0E) is faithfully flat.
(5) For primes p > n + 1 and for all objects X, P(E0E)⊗ X is fibrant.

We will refer to this model structure as the quasi-projective model structure.

Proof To ease notation, for the remainder of this proof we will writeA for the
Grothendieck abelian category (E0, E0E)−Comod of (E0, E0E)-comodules.
The required model structure was constructed by Barnes and Roitzheim [14],
building on earlier work of Hovey [30]. We start by recalling the data of the
quasi-projectivemodel structure. To this end, we need to introduce an auxiliary
class of morphisms.

Let P be the set of (representatives of) comodules M ∈ A such that the
underlying E0-module is finitely presented and projective; note that these are
precisely the compact objects of the abelian categoryA. A map f : X → Y in
C (L ,2)(A) is called aP-fibration or aP-equivalence if, for all P ∈ P ,A(P, f )

(using the notation of [14]) is a degree-wise surjection or quasi-isomorphism,
respectively. The class ofP-cofibrations is defined to be the collection of those
morphisms in C (L ,2)(A) that have the left lifting property with respect to all
P-fibrations which are also P-equivalences. In fact, these classes form the
P-model structure. The weak equivalences, cofibrations, and fibrations of the
quasi-projective model structures are obtained from theP-model structure via
left Bousfield localization along the quasi-isomorphisms; explicitly:

• A morphism f : X → Y in C (L ,2)(A) is a weak equivalence if and only if
the underlyingmorphismU ( f ) of chain complexes is a quasi-isomorphism

• The cofibrations are the P-cofibrations.
• The fibrations are then determined by the previous two classes.

The analogous construction can be carried out in Ch(A) and this gives rise
to the quasi-projective model structure. In particular, the forgetful functor
U : C (L ,2)(A) → Ch(A) preserves fibrations and weak equivalences. Claim
(1) is then precisely the content of [14, Theorem 6.9]. The free-forgetful
adjunction

P : Ch(A) C (L ,2)(A) :U
can be promoted to a Quillen adjunction by [14, Theorem 6.5].

In order to prove Claims (2), (3), and (4), we compare the quasi-projective
model structure to Hovey’s homotopy model structure on Ch(A). In general,
this model structure sits between the P-model structure and the quasi-
projective model structure on Ch(A), in the sense that we have inclusions

(P − equivalences) ⊆ (homotopy equivalences) ⊆ (quasi-isomorphisms).
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For the details of its construction, we refer to [30]. Using the finite cohomolog-
ical dimension of M≤n

fg (p) for p > n + 1, Proposition 5.19, it can be shown
that the homotopy model structure and the quasi-projective model structure on
Ch(A) coincide for p > n + 1, as shown in the proof of Theorem 4.11 in [9].
This allows us to import the key properties of the homotopy model structure
proven by Hovey to the quasi-projective model structure.

From now on, assume that p > n + 1. Since E is a Landweber exact ring
spectrumoffinite heightn, [30,Corollary 6.7] implies that the homotopymodel
category and hence the quasi-projective model category Ch(A) is compactly
generated by its unit E0. By adjunction, it follows that the same is true for the
quasi-projective model structure on C (L ,2)(A), with the compact generator
given by the tensor unit P(E0). This proves Claim (2).

Recall that an object M ∈ C (L ,2)(A) is faithfully flat (with respect to the
quasi-projective model structure) whenever the underived endofunctor M⊗−
preserves and reflects weak equivalences. Note that the tensor product ⊗ is
balanced, so it does indeed suffice to work with the functor M ⊗ −. Now
suppose f : X → Y is a weak equivalence in C (L ,2)(A) and consider the
induced morphism

P(E0E)⊗ f : P(E0E)⊗ X P(E0E)⊗ Y.

Using the projection formula (5.25), this map is a weak equivalence if and
only if E0E ⊗U f is a weak equivalence in Ch(A). This is the case if E0E ⊗
U f is a quasi-isomorphism and this can be detected in Ch(E0 −Mod) (with
the projective model structure). Therefore, the flatness claim reduces to the
analogous statement in Ch(E0 −Mod), where it is clear.

By a long exact sequence argument, we can reduce to showing that, for any
X ∈ C (L ,2)(A), H∗X = 0 if H∗(P(E0E)⊗ X) = 0. Applying the projection
formula (5.25) to the assumption yields H∗(E0E ⊗U X) = 0. Therefore,

0 � RhomCh(A)(E0, E0E ⊗U X) � RhomCh(E0−Mod)(E0, U X),

thus H∗(X) = 0 as claimed. Taken together, this implies that P(E0E) is
faithfully flat.

Finally, to show that P(E0E)⊗ X is fibrant for all X (Claim (5)), we use a
special case of Hovey’s fibrancy criterion [30, Theorem 5.2.3]: Any complex
of relative injective comodules is fibrant in the homotopy model structure on
Ch(A). Indeed, P(E0E)⊗ X is fibrant in the quasi-projective model structure
on C (L ,2)(A) if U (P(E0E) ⊗ X) = E0E ⊗ U X is fibrant in the homotopy
model structure on Ch(A). But E0E is a relative injective comodule by [30,
Lemma 3.1.3].
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Our algebraic analogue of the ∞-category Spn,p is the underlying ∞-
category of such a model category.

Definition 5.27 Let L = π2E . We define Frn,p = C (L ,2)((E0, E0E) −
Comod)c[W−1] to be the underlying symmetric monoidal ∞-category of
C (L ,2)((E0, E0E)− Comod) in the sense of [36, Example 4.1.3.6].

We will also make use of

Comodn,p = Ch((E0, E0E)− Comod)c[W−1],
the∞-category of E0E-comodules. Let E0E be the object in Comodn,p which
is the image of E0E ∈ Ch((E0, E0E) − Comod) under the localization
functor. Since the localization is lax and E0E is a commutative algebra in
Ch((E0, E0E)− Comod), E0E is a commutative algebra in Comodn,p.

Applying these definitions, we get the following∞-categorical corollary of
Theorem 5.26.

Corollary 5.28 Assume that p > n + 1. The ∞-categories Frn,p and
Comodn,p are monogenic presentably symmetric monoidal stable∞-categories.
Moreover, there is an induced adjunction of∞-categories

P : Comodn,p Frn,p :U ,

in which P is symmetric monoidal. Finally, the spectrum of maps between E0

and Y ⊗ E0E⊗k for any Y ∈ Ch((E0, E0E)− Comod) can be computed as

homCh((E0,E0E)−Comod)(E0, Y ⊗ E0E⊗k)

the chain complex of maps in the model category Ch((E0, E0E)− Comod).

Proof Presentability follows from [36, Proposition 1.3.4.22]. Theorem 5.26
implies that the∞-category Frn,p is symmetric monoidal, stable, and mono-
genic (see [36, Section 4.1.3]). [42] implies that Quillen adjunctions induce
adjunctions of ∞-categories. [26, Proposition 3.2.2] shows that since P is
symmetric monoidal, the induced P is symmetric monoidal. The last sentence
of the statement follows from the fact that E0 is cofibrant and Y ⊗ E0E⊗k is
fibrant.

Remark 5.29 It is worth noting that Franke’s category Frn,p is not equivalent
to Spn,p as a symmetric monoidal ∞-category for n ≥ 1 and any prime p.
One way to see this is based on the following observation: On the one hand,
since Frn,p is constructed from a category of chain complexes, it is an HZ-
linear category. On the other hand, the internal mapping objects of Spn,p are
En,p-local, so if they were also HZ-linear, then they would have to be rational,
forcing n = 0.
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5.4 Descent for Franke’s categories

The goal of this subsection is to show that (Cp)p∈P = (Frn,p)p∈P and

(Ap)p∈P = (P(π0(En,p ⊗ En,p)))p∈P

satisfy the conditions of Corollary 5.18.
Let (Bp, �p) = (π0(En,p), π0(En,p ⊗ En,p)) and let

Ap = P(π0(En,p ⊗ En,p)) = P(�p).

Since P is symmetric monoidal, Ap is a commutative algebra in Frn,p. By
Theorem 5.26, since P(E0E) is faithfully flat, −⊗ Ap is conservative.

Lemma 5.30 The collection (Ap)p∈P satisfies the conditions of Proposi-
tion 5.10.

Proof By Lemma 5.8, it is enough to show that the collection (�p)p∈P , where
�p is an object in Comodn,p, satisfies the conditions of Proposition 5.10. By
Lemma 5.7, it suffices to show that the vanishing-degree of �p is bounded
for large enough p. For X and Y objects in Comodn,p, consider the spectral
sequence associated to the cosimplicial spectrum

HomComodn,p(X, Y ⊗ (�p)
⊗•+1).

But as the cohomological dimension of the stack represented by (Bp, �p)

is n2 + n for large enough primes ((Proposition 5.19) there is a horizontal
vanishing line at the E2-page with intercept n2 + n (which does not depend
on p).

Lemma 5.31 Let A• be a formal cosimplicial spectrum. Then the associated
Bousfield–Kan spectral sequence collapses at the E2-page.

Proof Formality implies that A• �∏
n∈Z A•n , where the homotopy groups of

the spectra in A•n are concentrated in degree n. Since the spectral sequence
associated to A•n collapses at the E2-page, the result follows for A•.

Lemma 5.32 There is an equivalence of cosimplicial E∞-ring spectra

HomFrn (1Frn , A⊗•+1p ) � (E⊗•+1n,p )�.

In particular, Lemma 5.31 implies that the associated spectral sequence col-
lapses at the E2-page.
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Proof Because P is symmetric monoidal,

1Frn � P(1Comodn,p) � P(Bp).

Thus

HomFrn (1Frn , A⊗•+1p ) � HomFrn (P(Bp), P(�p)
⊗•+1)

� HomComodn,p(Bp, U (P(�p
⊗•+1)))

� HomComodn,p(Bp, U P(�p
⊗•+1))

� homCh((Bp,�p)−Comod)(Bp, U P(�⊗•+1p ))

� homCh((Bp,�p)−Comod)(Bp, U P(Bp)⊗ (�⊗•+1p ))

� homCh(Bp−mod)(Bp, U P(Bp)⊗ (�⊗•p ))

� U P(Bp)⊗Bp (�⊗•p )

� U P(Bp)⊗Bp (E⊗•+1n,p )0

� (En,p)� ⊗Bp (E⊗•+1n,p )0

� (E⊗•+1n,p )�.

From the first to the second line we use the (U , P)-adjunction and that P is
monoidal (Corollary 5.28). From the second to the third line we use that �p is
flat and thatU P preserves weak equivalences. From the third to fourth line we
use that U P(�⊗•+1p ) is a cosimplicial fibrant object and E0 is cofibrant. From
the fourth to fifth linewe useLemma5.24. From the fifth to the sixth linewe use
the free-forgetful adjunction between (Bp, �p)-comodules and Bp-modules.
From the sixth to the seventh line we use the enrichment of Ch(Bp −mod) in
itself. From the seventh to the eighth line we use the flatness of �p over Bp.
From the eighth to the ninth line we use the definition of (−)� from Definition
4.2 and the fact that L = π2(En,p).

Lemma 5.33 The Picard group of ModE� is Z/2 (independent of p).

Proof This follows fromBaker–Richter [13]. Their result makes use of the fact
that E� is an even periodic E∞-ring spectrum with regular local Noetherian
π0.

Corollary 5.34 There is a canonical symmetric monoidal equivalence of∞-
categories

∏��

F Mod(En,p)�

�−→
∏Pic

F Mod(En,p)� .
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Now Corollary 5.18 applies to the collections (Cp)p∈P = (Frn,p)p∈P and
(Ap)p∈P :

Corollary 5.35 There is a canonical symmetric monoidal equivalence of sym-
metric monoidal∞-categories

∏Pic

F Frn,p
�−→ Loc Pic Tot(

∏�

F Mod
(E⊗•+1n,p )�

).

5.5 The proof of the main result

We promote Theorem 4.20, the main result of Sect. 4, to an equivalence of
∞-categories:

Theorem 5.36 LetF be a non-principal ultrafilter onP . There is a symmetric
monoidal equivalence of cosimplicial compactly generated Q-linear stable
∞-categories

∏�

F ModE⊗•+1n,p
�

∏�

F Mod
(E⊗•+1n,p )�

.

Proof. Theorem 4.20 produces a cosimplicial E∞-ring spectrum

∏
F E⊗•+1n,p �

∏
F (E⊗•+1n,p )�.

Applying modules Mod(−) to this gives a symmetric monoidal equivalence of
cosimplicial∞-categories

Mod∏
F E⊗•+1n,p

� Mod∏
F (E⊗•+1n,p )�

.

Theorem 3.63 applies to this to give a symmetric monoidal equivalence

∏��

F ModE⊗•+1n,p
�

∏��

F Mod
(E⊗•+1n,p )�

.

Since the E∞-ring spectra are even periodic, Corollary 3.61 applies to give a
symmetric monoidal equivalence

∏�

F ModE⊗•+1n,p
�

∏�

F Mod
(E⊗•+1n,p )�

.

Finally, we may prove the main result of the paper:
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Theorem 5.37 There is a symmetric monoidal equivalence of compactly gen-
erated Q-linear stable∞-categories

∏Pic

F Spn,p �
∏Pic

F Frn,p,

for any non-principal ultrafilter F on the prime numbers.

Proof. By Theorem 5.36, there is a cosimplicial equivalence

∏�

F ModE⊗•+1n,p
�

∏�

F Mod
(E⊗•+1n,p )�

.

This induces a symmetric monoidal equivalence of∞-categories

Loc Pic Tot
∏�

F ModE⊗•+1n,p
� Loc Pic Tot

∏�

F Mod
(E⊗•+1n,p )�

.

Now applyingCorollary 5.23 andCorollary 5.35 gives the desired equivalence

∏Pic

F Spn,p �
∏Pic

F Frn,p .

6 Applications

In this section, we give an application of the equivalence of Theorem 5.37 to
local generalized Moore spectra. We show that, for large enough primes, such
spectra exist and admit coherent multiplicative structure.

6.1 Compact ∞-operads

Let Op∞ be the ∞-category of ∞-operads, introduced in [36, Section 2].
Overloading notation, we will write⊗ for the Boardman–Vogt tensor product
of∞-operads constructed in [36, Section 2.2.5]. Let Cat⊗∞ = CAlg(Cat∞) be
the∞-category of symmetric monoidal∞-categories.

The next result summarizes the salient features of Op∞ needed in this sec-
tion.

Proposition 6.1 The∞-category Op∞ has the following features:

(1) Op∞ is a presentable∞-category.
(2) The forgetful functor U : Cat⊗∞ → Op∞ admits a left adjoint, the monoidal

envelope functor.
(3) The functor U preserves filtered colimits.
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Proof The first item is a consequence of [36, Proposition 2.1.4.6], while the
second one is proven in [36, Section 2.2.4].

Recall now that a functor F : C → D is said to detect (filtered) colimits
if for every (filtered)∞-category I a diagram ρ : I � → C is colimit cone if
and only if F ◦ ρ is a colimit cone. Note that if G : D → E detects (filtered)
colimits then G ◦ F detects (filtered) colimits if and only if F detects (filtered)
colimits. Also, if F detects (filtered) colimits it preserves (filtered) colimits.
The converse is true assuming F is conservative.

In order to see that U preserves filtered colimits, consider the sequence of
functors

Cat⊗∞
U Op∞

U1
(Cat∞)/N (F in∗)

U2 Cat∞ .

Here U1 and U2 are the canonical forgetful functors. Note that U , U1, and
U2 are all conservative and that U2 admits a right adjoint (given by C �→
(C × N (F in∗) → N (F in∗)). We thus get that U2 detects all colimits. In [20,
Theorem 3.3.1], it is shown that the non-symmetric analogue of the composite
U2 ◦ U1 detects filtered colimits and thus that U1 detects filtered colimits.
Their proof is quite general; replacing � by N (F in∗) gives a proof that the
composite U2 ◦ U1 detects filtered colimits and thus that U1 detects filtered
colimits. By [20, Corollary 3.3.3] U1 ◦U detects filtered colimits and thus U
detects filtered colimits.

As an immediate consequence of Proposition 6.1 (2) and (3), we obtain:

Corollary 6.2 The forgetful functor U : Cat⊗∞ → Op∞ preserves ultraprod-
ucts.

An ∞-operad O is called compact if it is a compact object in Op∞. We
would like to have a recognition principle for compact ∞-operads. To this
end we shall recall the description of Op∞ as the underlying∞-category of a
model structure on the category of∞-preoperads.

Let sSet+ be the 1-category of marked simplicial sets and let F =
(N (F in∗), M) ∈ sSet+ be the nerve of Fin∗ with the inert edges marked.
Recall from [36, Section 2.1.4] that the category of ∞-preoperads POp∞ is
defined to be sSet+/F . For an object X̄ = (X → F) in POp∞, we denote by X

the underlying simplicial set and by U (X̄) the underlying object in sSet/Fin∗
given by forgetting the marked simplices. The category POp∞ is simplicially
enriched and, given objects X̄ and Ȳ , we will write map(X̄ , Ȳ ) for the simpli-
cial mapping space.

Proposition 6.3 The category POp∞ admits a left proper combinatorial sim-
plicial model structure with the following properties:
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(1) A morphism f : X̄ → Ȳ in POp∞ is a cofibration if and only if it induces
a monomorphism between the underlying simplicial sets X and Y .

(2) X̄ = (X → F) is fibrant if and only if U (X̄) is an ∞-operad and the
marked edges in X̄ are the inert edges.

(3) Fibrant objects in POp∞ are closed under filtered colimits.
(4) The localization functor

R : POp∞ → Op∞

is essentially surjective, commutes with filtered colimits, and preserves
compact objects.

(5) POpω∞ consists of the objects X̄ such that X has finitely many non-
degenerate simplices.

(6) Op∞ is compactly generated by the objects in R(POpω∞).

Proof The model structure on POp∞ is constructed in [36, Proposition
2.1.4.6], where properties (1) and (2) are explicitly stated. Part (3) follows
from [36, PropositionB.1.6] and the observation that all generatingP-anodyne
maps have finite source and target. Since R is a localization functor, it is essen-
tially surjective.

The model structure on POp∞ is defined by applying [38, A.2.6.15]. Thus
by [38, Remark A.2.6.16], weak equivalences are preserved under filtered
colimits and so the functor R preserves filtered colimits. Next we show that R
preserves compact objects. Let X̄ ∈ POpω∞ and let F : I → Op∞ be a filtered
diagram together with a choice of lift F̂ : I → POp∞ such that F̂(i) is fibrant
for all i ∈ I . Then we have

Map(R(X̄), colim I F(i)) � map(X̄ , colim I F̂(i))

� colim I map(X̄ , F̂(i))

� colim I Map(R(X̄), F(i)).

Part (5) follows from the definition of POp∞. To get Part (6) we combine the
earlier parts together with the fact that POp∞ is compactly generated as it is
an over category over sSet+.

In light of Part (5) of Proposition 6.3, we call an∞-operad O finite if it is
equivalent to R(X̄) for some X̄ ∈ POpω∞.

Corollary 6.4 An ∞-operad O is compact if and only if it is a retract of a
finite∞-operad.

Corollary 6.5 LetO andO′ be compact∞-operads. ThenO⊗O′ is a compact
∞-operad.
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Proof [36, Notation 2.2.5.5 and Proposition 2.2.5.13] show that the tensor
product of finite∞-preoperads is finite, so the claim follows from Corollary
6.4.

In [36, Remark 4.1.4.8], Lurie constructs an ∞-operad O(m), which is a
non-unital version of the associative operad. It is constructed by applying R to
an object in POp∞ with finitely many non-degenerate simplices. Thus O(m)

is compact by Parts (4) and (5) of Proposition 6.3. In [36, Corollary 2.3.1.8,
Proposition 2.3.1.9], Lurie produces a unitalization functor for∞-operads and
proves that it is given by−⊗E0. Define Am to be the∞-operadO(m)⊗E0.

Example 6.6 For any m, the operad Am is compact.

Proof By [36, Example 2.1.4.9],E0 is compact. NowAm is compact by Corol-
lary 6.5.

6.2 Existence of multiplicative local generalized Moore spectra

In Theorem 5.36 we established a symmetric monoidal equivalence of cosim-
plicial compactly generated Q-linear stable∞-categories

�•+1 : ∏�
F ModE⊗•+1n,p

� ∏�
F Mod

(E⊗•+1n,p )�
.

In this subsection, we describe the compatibility of this equivalence with the
homotopy groups functor and use this to study the existence of En,p-local
generalized Moore spectra and their multiplicative structures.

For any p and n, there are canonical isomorphisms ϕp : π0En,p
∼=

π0(En,p)�. If F is any ultrafilter on P , these isomorphisms assemble into
an isomorphism ϕ = ∏

Fϕp : ∏
Fπ0En,p

∼= ∏
Fπ0(En,p)� and we denote

by

�′1 : (
∏

Fπ0En,p)−Modgraded (
∏

Fπ0(En,p)�)−Modgraded

the induced equivalence between the associated (1-)categories of graded mod-
ules.

Proposition 6.7 For any non-principal ultrafilter F on P , there is a commu-
tative diagram

∏�
F ModEn,p

�

�1 �

Mod∏
F En,p

π∗

�

(
∏

Fπ0En,p)−Modgraded

�′1 �
∏�

F Mod(En,p)� � Mod∏
F (En,p)� π∗ (

∏
Fπ0(En,p)�)−Modgraded .

(6.8)
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Proof The result follows by unwinding the proof of Theorem 5.36. Indeed, the
middle vertical equivalence arises from an equivalence of E∞-ring spectra

φ : ∏F (En,p)�
� ∏

F En,p.

The equivalence �1 is then defined to make the left square commute, so it
remains to consider the right square. By construction, φ is induced from a
canonical map

∏
F Hπ0En,p →∏

F En,p, which fits into a commutative dia-
gram

∏
Fπ0En,p

ϕ

∼=
∼=

∏
Fπ0(En,p)�

∼=

π0
∏

F En,p
π0φ

∼= π0
∏

F (En,p)�,

where the vertical isomorphisms are witnessing the fact thatπ0 commutes with
ultraproducts. It follows that �′1 is canonically equivalent to the equivalence
induced by π0φ, which in turn makes the right square in (6.8) commute.

Informally speaking, the above proposition shows that the effect of �1 on
the homotopy groups of the unit is equivalent to the effect of the ultraproduct
of the coordinatewise isomorphisms ϕp : π0En,p

∼= π0(En,p)�. This is in
sharp contrast to the construction of the equivalence φ, which only exists after
applying the ultraproduct at a non-principal ultrafilter.

Definition 6.9 Let I = (i0, . . . , ik−1) be a sequence of non-negative integers
and fix a height n and prime p. An En,p-local generalized Moore spectrum
of type I is a compact En,p-local spectrum Mloc

n,p(I ) with (En,p)∗Mloc
n,p(I ) ∼=

(En,p)∗/(pi0, ui1
1 , . . . , uik−1

k−1).

Theorem 6.10 Let O be a compact∞-operad and n ≥ 0 an integer. Given a
sequence I = (i0, . . . , ik−1) of non-negative integers, there exists an integer
N = N (O, n, I ) such that, for all primes p ≥ N, an En,p-local generalized
Moore spectrum Mloc

n,p(I ) of type I exists and admits the structure of an O-
algebra.

Proof For every height n, prime p, and sequence I as above, the strict commu-
tative ring (En,p)0/(pi0, ui1

1 , . . . , uik−1
k−1) in ((En,p)0, (En,p)0(En,p))−Comod

lifts to an object

Mloc
n,p(I )alg = (En,p)�/(pi0, ui1

1 , . . . , uik−1
k−1) ∈ CAlg(Frn,p).
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Since the objects Mloc
n,p(I )alg are compact and have the structure of E∞-

algebras, they give rise to a map of∞-operads

[Mloc
n,p(I )alg]F : E∞

∏
p∈P Frωn,p

∏
F Frωn,p (

∏ω
F Frn,p)

ω.

Since Mloc
n,p(I )alg can be built out of 2k many cells, independently of p,

[Mloc
n,p(I )alg]F factors through the symmetric monoidal inclusion (see Lemma

3.45)

(
∏Pic

F Frn,p)
ω (

∏ω
F Frn,p)

ω.

Restricting along the unique map O → E∞ gives rise to an O-algebra in
(
∏Pic

F Frn,p)
ω, which we will also denote by [Mloc

n,p(I )alg]F . Let � be the
equivalence of Theorem 5.37 and consider the diagram

O (
∏Pic

F Frn,p)ω

�−1 �

∏�

F Modω
(En,p )�

π∗

(�1)
−1 �

(
∏

Fπ0(En,p)�)−Modgraded

(�′1)−1 �

(
∏Pic

F Spn,p)ω
∏�

F Modω
En,p

π∗
(
∏

Fπ0En,p)−Modgraded

∏
p∈U Spω

n,p
∏

F Spω
n,p

∏
F Modω

En,p
.

(6.11)

The top central square commutes by the construction of the symmetric
monoidal equivalence �, while the commutativity of the top right square is
the content of Proposition 6.7. The indicated arrows are symmetric monoidal
inclusions by Lemma 3.45, and it follows that the bottom square commutes as
well.

The ultraproduct
∏

F Spω
n,p can be computed in Cat⊗∞, the∞-category of

symmetric monoidal∞-categories, and hence in Op∞ by Corollary 6.2, so we
obtain a map of∞-operads

O
[Mloc

n,p(I )alg]F−−−−−−−−→ (
∏Pic

F Frn,p)
ω �−1−−→ (

∏Pic

F Spn,p)
ω −→

∏
F Spω

n,p,

where we suppress the superscript ⊗ for ease of readability. Since O is a
compact∞-operad, there exists U ∈ F and the dashed factorization in Dia-
gram (6.11). That is, there is an O-algebra in

∏
p∈U Spω

n,p corresponding to

[Mloc
n,p(I )alg]F . For p ∈ U , we will denote the corresponding O-algebra in

Spω
n,p by Mloc

n,p(I ).
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It remains to identify the En,p-homology of the underlying object of
Mloc

n,p(I ). To this end, it suffices to compute the composite

O (
∏Pic

F Spn,p)
ω

∏�
F Modω

(En,p)

π∗
(
∏

Fπ0(En,p))−Modgraded

From the commutativity of the top part of Diagram (6.11), we deduce that this
is isomorphic to

∏
F (En,p)∗/(pi0, ui1

1 , . . . , uik−1
k−1). Thus there exists V ⊆ U

with V ∈ F such that, for all p ∈ V , Mloc
n,p(I ) has the desired En,p-homology.

Applying the above procedure to every non-principal ultrafilter, the claim
follows from the fact that the intersection of all non-principal ultrafilters on P
is the Frechet filter on P .

Specializing to the associative∞-operadAm , which is compact by Example
6.6, we obtain the existence of associative multiplicative structure on the local
generalized Moore spectra for large enough primes.

Corollary 6.12 Let n, m ≥ 0 and let I = (i0, . . . , ik−1) be a k-tuple of
natural numbers, there is an integer N = N (n, I, m) such that for all primes
p ≥ N an En,p-local generalized Moore spectrum Mloc

n,p(I ) exists and admits
the structure of an Am-algebra spectrum.
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